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Abstract

Resampling from a target measure whose density is unknown is a fundamental
problem in mathematical statistics and machine learning. A setting that dominates
the machine learning literature consists of learning a map from an easy-to-sample
prior, such as the Gaussian distribution, to a target measure. Under this model,
samples from the prior are pushed forward to generate a new sample on the target
measure, which is often difficult to sample from directly. Of particular interest is the
problem of generating a new sample that is proximate to or otherwise conditioned
on a given input sample. In this paper, we propose a new model called mirror
bridges to solve this problem of conditional resampling. Our key observation is that
solving the Schrödinger bridge problem between a distribution and itself provides
a natural way to produce new samples from conditional distributions, giving in-
distribution variations of an input data point. We demonstrate how to efficiently
estimate the solution to this largely overlooked version of the Schrödinger bridge
problem, and we prove that under mild conditions, the difference between our
estimate and the true Schrödinger bridge can be controlled explicitly. We show
that our proposed method leads to significant algorithmic simplifications over
existing alternatives, in addition to providing control over in-distribution variation.
Empirically, we demonstrate how these benefits can be leveraged to produce
proximal samples in a number of application domains.

1 Introduction

Mapping one probability distribution to another is a central technique in mathematical statistics
and machine learning. Myriad computational tools have been proposed for this critical yet often
challenging task. Models and techniques for optimal transport provide one class of examples, where
methods like the Hungarian algorithm [Kuhn, 1955] map one distribution to another with optimal cost.
Adding entropic regularization to the static optimal transport problem yields efficient algorithms like
Sinkhorn’s method [Deming and Stephan, 1940, Sinkhorn, 1964], which have been widely adopted
in machine learning since their introduction by Cuturi [2013]. Static entropy-regularized optimal
transportation is equivalent to a dynamical formulation known as the Schrödinger bridge problem
[Schrödinger, 1932, Léonard, 2014], which has proven useful to efficiently compute an approximation
of the optimal map paired with an interpolant between the input measures.

Inspired by these mathematical constructions and efficient optimization algorithms, several methods
in machine learning rely on learning a map from one distribution to another. Beyond optimal transport,
diffusion models, for instance, learn to reverse a diffusion process that maps data to a noisy prior.
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Initial samples σ = 1 σ = 9

Our method allows resampling with control over in-distribution variation

Figure 1: We visualize the resampling of a 2D distribution obtained with our method for different
values of noise σ. Higher noise value results in greater in-distribution sample variance.

Special attention has been given to learning methods that accomplish this in a stochastic manner, i.e.,
modeling the forward noising process using a stochastic differential equation (SDE).

The most common learning applications of distribution mapping attempt to find a map from a simple
prior distribution to a complex data distribution, either using a score-matching strategy [Song and
Ermon, 2019, Ho et al., 2020, Song et al., 2021] or leveraging a formulation of the Schrödinger bridge
problem [De Bortoli et al., 2021, Shi et al., 2022, 2023, Zhou et al., 2024]; other learning applications
map one complex data distribution to another [Cuturi, 2013, Courty et al., 2017].

Rather than mapping a simple prior to a complex data distribution, in this paper we instead tackle
the understudied problem of mapping a probability distribution to itself, that is, finding a joint
distribution whose marginals are both the same data distribution π. This task might seem inane at
first glance, since two simple couplings satisfy our constraints: one is the independent coupling
p(x, y) = π(x)π(y), and the other is the “diagonal” map given by p(x, y) = π(x)δy. The space of
couplings between a measure and itself, however, is far richer than these two extremes and includes
models whose conditional distributions are neither identical nor Dirac measures.

We focus on the class of self-maps obtained by entropy-regularized transport from a measure to
itself. Formally, we define a mirror Schrödinger bridge to be the minimizer of the KL divergence
DKL(P ∥ P0) over path measures P with both initial and final marginal distributions equal to
π, where P0 is an Ornstein-Uhlenbeck process with noise σ. Mirror Schrödinger bridges are the
stochastic counterpart to minimizing DKL

(
p ∥ p0

)
, where p0 is the probability density of the joint

distribution associated with the path measure P0, over the joint distributions p on Rn ×Rn satisfying
the linear constraints

∫
p(x, y)dy = π(x) and

∫
p(x, y)dx = π(y). While the former minimizes the

Kullback-Leibler divergence on path space, the latter is a minimization over density couplings.

Despite its simplicity, the mirror case of the Schrödinger bridge problem suggests a rich application
space. Couplings with identical marginals have proven useful to enhance model accuracy in vision and
natural language processing by reinterpreting attention matrices as transport plans [Sander et al., 2022].
Few works, however, consider this task from the perspective of optimizing over path measures or
provide control over the entropy of the matching at test time. Albergo et al. [2023] propose a stochastic
interpolant between a distribution and itself, but their interpolants are not minimal in the relative
entropy sense. Such minimal interpolants are those with minimal kinectic energy, and in applications,
minimizing the kinectic energy of a path has been correlated to faster sampling [Shaul et al., 2023].

Contributions. We investigate the mirror Schrödinger bridge problem and demonstrate how it can
be leveraged to obtain in-distribution variants of a given input sample. In particular, given a sample
x0 ∼ pdata, we build an estimate for the stochastic process {Xt}t∈[0,1] with minimal relative entropy
under which the sample x0 arrives at some x1 ∼ pdata with x1 proximal but not identical to x0. We
call our estimate a mirror bridge. Although this estimate might not be the mirror Schrödinger bridge,
we prove that under mild conditions the former is a good approximation of the latter in an explicitly
quantifiable way. Furthermore, we demonstrate that our algorithm for obtaining mirror bridges has
computational advantages over alternatives used to compute Schrödinger bridges.

Our contributions are twofold. First, on the theoretical side, we use the time symmetry of the mirror
Schrödinger bridge to express it as the limit of iterates produced by a symmetrized version of the
Iterative Proportional Fitting Procedure (IPFP). We show that this scheme admits a convenient first-
order approximation in terms of a convergent alternating minimization procedure that dramatically
reduces computational expense in practice. Our mirror bridge is the limit of the latter procedure,
and we provide an error bound to justify it as a good approximation. Second, in applications, the
implementation of our method allows for sampling from the conditional distribution X1 | X0 = x0,
allowing us to control how proximal a generated sample x1 is relative to the input sample x0.
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2 Related Works

Entropy regularized optimal transport. A few recent works employ the idea of a coupling with the
same marginal constraints. Feydy et al. [2019], Mensch et al. [2019] use static entropy-regularized
optimal transportation from a distribution to itself to build a cost function correlated to uncertainty.
Sander et al. [2022] reinterpret attention matrices in transformers as transport plans from a distribution
to itself, while Agarwal et al. [2024] analyze this reinterpretation in the context of gradient flows.
Also relevant is the work of Kurras [2015], who shows that, over discrete state spaces, Sinkhorn’s
algorithm can be simplified in the case of identical marginal constraints. These works do not consider
the coupling with the same marginal constraints from the perspective of path measures on continuous-
state spaces. In our paper, we focus on the path measure formulation instead of viewing it as a
self-transport map and present a practical algorithm to solve it.

Expectation maximization. Our method can be categorized under the umbrella of expectation maxi-
mization algorithms, drawing from the theory of information geometry. A number of recent papers
introduce related formulations to machine learning; most relevant to us are Brekelmans and Neklyu-
dov [2023], Vargas and Nüsken [2023], Vargas et al. [2024]. These works, however, focus on finding
a path measure with distinct marginal constraints, overlooking the potential application to resampling
and algorithmic simplifications obtained for the case in which the marginal constraints are the same.

Schrödinger bridges and stochastic interpolants. Schrödinger bridges have been used to obtain
generative models by flowing samples from a prior distribution to an empirical data distribution from
which new data is to be sampled. Several methods have been proposed to this end: De Bortoli et al.
[2021], Vargas et al. [2021] iteratively estimate the drift of the SDE associated with the diffusion
processes of half-bridge formulations. While the first uses neural networks and score matching, the
latter employs Gaussian processes. From these, a number of extensions or alternatives have been
presented; most relevant are [Shi et al., 2023, Peluchetti, 2023], which extend [De Bortoli et al., 2021]
but differ with respect to the projection sets used to define their half-bridge formulations. Schrödinger-
bridge-based methods alleviate the computational expense incurred by score-based generative models
(SGM) [De Bortoli et al., 2021]. The latter requires the forward diffusion process to run for longer
times with smaller step sizes. Unlike SGM, our method provides a tool to flow an existing sample in
the same data distribution with control over the spread of the newly obtained sample.

To the best of our knowledge, the work of Albergo et al. [2023] is the only one in the literature on
generative modeling that considers maps from a distribution to itself. In their paper, flow matching
learns a drift function associated with a stochastic path from the data distribution to itself. Their
stochastic interpolants, however, do not attempt to seek optimality in the relative entropy sense, a
property correlated to sampling effectiveness and generation quality [Shaul et al., 2023]. By contrast,
our method seeks to estimate the coupling with minimal relative entropy, similar in spirit to methods
such as [Vargas et al., 2021, De Bortoli et al., 2021, Shi et al., 2023]; our method, however, presents
certain algorithmic advantages over these, which can only be derived for the mirror case.

3 Mathematical Preliminaries

Definition. Let n > 0 be an integer, and let P0 ∈ P(C ([0, 1],Rn)) be a reference measure in the
space of path measures. Following [Jamison, 1975, Léonard, 2014], we define the Schrödinger bridge
problem as the problem of finding a path measure PSB interpolating between prescribed initial and
final marginals π0 and π1 that is the closest to P0 with respect to Kullback-Leibler divergence DKL.
To be precise, we define PSB to be the solution of the following optimization problem:

PSB := argmin
P∈D(π0,π1)

DKL

(
P ∥ P0

)
, (1)

where D(π0, π1) denotes the set of path measures with marginals π0 and π1. In other words, we say
that PSB is the direct DKL projection of P0 onto the space D(π0, π1).

The reference path measure P0 is typically chosen to be associated with a diffusion process, which is
defined to be any stochastic process Xt governed by a forward SDE

dXt = ft(Xt)dt+ σdWt,

where ft is the forward drift function, σ > 0 is the noise coefficient, and Wt is the Wiener
process.Such a process Xt corresponds to a unique path measure once an initial or final condition
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is specified. An important aspect of diffusion processes is that their time-reversals are diffusion
processes of the same noise coefficient σ. That is, if Xt is a diffusion process with time-reversal Yt,
then the ensembles (Yt)t∈[0,1] and (X1−t)t∈[0,1] coincide, and Yt is governed by a backward SDE

dYt = bt(Yt)dt+ σdWt,

where bt denotes the backward drift function (see [Winkler et al., 2023, §2.3]).

In the case where P0 arises from a diffusion process, any path measure with finite KL divergence
with respect to P0, including the Schrödinger bridge PSB, necessarily also arises from a diffusion
process with noise σ [Vargas et al., 2021, Léonard, 2014]. Consequently, by adjusting the initial
condition of the reference SDE, we can assume that the reference process P0 has a prescribed initial
marginal π0, without changing the solution to (1).

Iterative Proportional Fitting Procedure. In the literature, the typical strategy for solving the
problem (1) is to apply a general technique known as the Iterative Proportional Fitting Procedure
(IPFP) [Fortet, 1940, Kullback, 1968]. This procedure obtains the Schrödinger bridge by iteratively
solving the following pair of half-bridge problems:

P2k+1 = argmin
P∈D(·,π1)

DKL

(
P ∥ P2k

)
, P2k+2 = argmin

P∈D(π0,·)
DKL

(
P ∥ P2k+1

)
, (2)

where D(·, π1) (resp., D(π0, ·)) denotes the space of path measures with final (resp., initial) marginal
π1 (resp., π0). Ruschendorf [1995] proves that the sequence of iterates Pk converges in total variation
to PSB as k → ∞. IPFP can be thought of as an extension of Sinkhorn’s algorithm to continuous
state spaces, where the rescaling updates characteristic of Sinkhorn are replaced by iterated direct
DKL projections onto sets of distributions with fixed initial or final marginal [Essid and Pavon, 2019].

Applications. Suppose π0 is given by a data distribution pdata, and take π1 to be an easy-to-sample
distribution pprior, e.g., N (0, I). The backward diffusion process associated with PSB gives a model
for sampling from pdata. In practice, the IPFP iterates in (2) can be solved using diffusion Schrödinger
bridge (DSB), an algorithm developed by De Bortoli et al. [2021]. DSB relies on the following fact,
which is a consequence of Girsanov’s theorem: P2k+1 is the path measure whose backward drift
equals the time-reversal of the forward drift of P2k, and P2k+2 is the path measure whose forward
drift equals the time-reversal of the backward drift of P2k+1. Leveraging this, DSB solves for PSB by
training neural networks to learn the forward and backward drifts associated with the IPFP iterates.

4 Mirror Schrödinger Bridges

Given a reference path measure P0 and a prescribed marginal distribution π, we consider the
Schrödinger bridge problem between π and itself with respect to P0. In the case where P0 is
time-symmetric, meaning that the path measure is invariant under the transformation t → −t, the
Schrödinger bridge will inherit the time-symmetry

PMSB := argmin
P∈D(π,π)

DKL

(
P ∥ P0

)
, (3)

so that PMSB ∈ D(π, π) is the path measure with identical prescribed marginals equal to π that is
closest to the reference measure P0 with respect to the KL divergence DKL.

A naïve approach to solving the mirror Schrödinger bridge problem (3) is to apply IPFP with both
marginals π0 = π1 set equal to π. In practice, this requires iterative training of two neural networks
fθ
t and bϕt , the first modeling the drift of the forward diffusion process associated to PMSB and the

latter modeling the drift of the corresponding backward process. But this straightforward application
of IPFP leads to unnecessary computational expense, as it fails to use the time-symmetry of the
problem (3). In particular, at optimality the forward and backward drifts of PMSB must be equal,
because the mirror Schrödinger bridge PMSB is time-symmetric. Related works in entropic optimal
transportation suggest that the use of one optimization variable for the static transport formulation
in the symmetric case (see [Kurras, 2015, Section 3] and [Feydy et al., 2019, Equations (24)-(25)]),
but to our knowledge no approach has been developed to leverage symmetry for the dynamical
formulation in the language of path measures. This suggests the strategy of modeling the drift with
a single neural network and using the IPFP iterations to recursively train that network. While this
strategy already yields a significant simplification in the implementation of IPFP, it turns out that we
can do even better by further exploiting the time-symmetry of the mirror problem.
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In §4.1, we introduce a symmetrized version of IPFP, replacing the second projection with a step that
enforces symmetry of the bridge iterate. In §4.2, we present the key insight that, at least to first order,
this symmetrization step can be performed analytically by averaging the forward and backward drifts
of the previous iterate. We show that this drift averaging can be interpreted as a minimization problem
in its own right, by simply reversing the direction of the DKL divergence in the symmetrization step.
The resulting method is a convenient first-order approximation of symmetrized IPFP in terms of what
is known in information geometry as the Alternating Minimization Procedure (AMP), first formalized
by Csiszár and Tusnády [1984]. Then, in §4.3, we derive an efficient algorithm that trains a single
neural network modeling the drift associated to PMSB and requires half the computational expense in
terms of training iterations for the mirror problem compared to other IPFP-based algorithms.

4.1 Symmetrized Iterative Proportional Fitting

Take the reference path measure P0 to be time-symmetric. As an example, we can take P0 to be
associated to an Ornstein–Uhlenbeck process Xt (at equilibrium) given by an SDE of the form
dXt = −αXtdt + σdWt, for α > 0, or more generally any reversible diffusion process. We
consider the following iterative scheme involving a pair of direct DKL projection steps:

P2k+1 = argmin
P∈D(π,·)

DKL

(
P ∥ P2k

)
(direct) (4)

P2k+2 = argmin
P∈S

DKL

(
P ∥ P2k+1

)
, (direct) (5)

where S is the set of time-symmetric path measures with no marginal constraints. This scheme is a
dynamical analogue for path measures of the symmetrized version of Sinkhorn’s algorithm described
by Kurras [2015]. Each iteration of this scheme in (4)-(5) is designed to obtain the time-symmetric
measure P that minimizes the objective while remaining close in DKL divergence to the measure
obtained in the previous half iteration, which satisfies the initial marginal constraint π. As direct DKL

projections satisfy the Pythagorean theorem for DKL divergences, we have the following result:
Lemma 4.1. The scheme in (4)-(5) converges to the mirror Schrödinger bridge.

This is proven by Ruschendorf [1995]. A theoretical requirement for this scheme is that the reference
measure P0 be time-symmetric, so standard Brownian motion cannot be used as a prior. As we show
in §4.2, the first projection step (4) has a simple analytical solution, but the problem of computing
the direct DKL projection (5) onto the set S of time-symmetric path measures is considerably more
difficult, and it remains open as to whether this projection admits an explicit analytical description,
like for the projection (4). Thus, to obtain an algorithmic improvement on IPFP that leverages the
symmetry of our problem, we would like a more efficient alternative to explicitly solving (5).

4.2 Alternating Minimization Procedure (AMP)

A key insight of our paper is that the symmetrization step simplifies dramatically if we reverse the
direction of the DKL divergence. This motivates us to consider a modified version of our symmetrized
IPFP scheme, where the DKL divergence in (5) is reversed. We prove in this section that the resulting
alternating minimization scheme (1) has a simple analytical solution for the symmetrization step, and
(2) agrees with symmetrized IPFP to first order.

More precisely, take the reference path measure P0 to be time-symmetric. As an example, we
can take P0 to be associated to an Ornstein–Uhlenbeck process Xt given by an SDE of the form
dXt = −αXtdt+σdWt, for α > 0, or more generally any reversible diffusion process. We propose
the following iterative scheme:

P2k+1 = argmin
P∈D(π,·)

DKL

(
P ∥ P2k

)
(direct) (6)

P2k+2 = argmin
P∈S

DKL

(
P2k+1 ∥ P

)
, (reverse) (7)

where S is the set of time-symmetric path measures with no marginal constraints. This scheme is an
instance of AMP and differs from IPFP in that it alternates between direct and reverse DKL projections.
To see this, note that (6) is a direct DKL projection and coincides with the odd-numbered steps in the
IPFP iterations (2), whereas (7) is a reverse DKL projection, as the KL divergence is being computed
against the optimization parameter P instead of the previously produced path measure P2k+1.
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If for some reason P2k+1 is not supported at a point, then the solution to the minimization in (7)
may not be unique, in which case we define P2k+2 to be any minimizer. But this is no problem:
in what follows, we will prove Propositions 4.2 and 4.3, which together imply that the subsequent
odd-numbered iterate P2k+3 is always uniquely determined, regardless of the choice of P2k+2. We
now explore each of the projections in our alternating minimization scheme in detail.

Projection (6). We can compute the direct DKL projection onto the set of path measures with a
prescribed initial marginal distribution π following the trajectory-caching method developed and
applied by Vargas et al. [2021], De Bortoli et al. [2021]. Let π be a probability distribution on Rn,
and let P ∈ D(π, ·) and P† ∈ S be path measures corresponding to diffusion processes. Write fP

t and
bPt for the forward and backward drift functions corresponding to P, and write vP

†

t = fP†

t = bP
†

t for
the drift of P†. As a consequence of Girsanov’s theorem, we can write DKL(P ∥ P†) explicitly in
terms of fP

t and vP
†

t , or equivalently in terms of bPt and vP
†

t ; for references, see [Chen et al., 2016, §3]
as well as [Winkler et al., 2023, §2.2, §2.3]. Indeed, for some constants C1, C2, we have

DKL(P ∥ P†) = C1 +
1

2σ2

∫ 1

0

EP

[(
fP
t (Xt)− vP

†

t (Xt)
)2]

dt (8)

= C2 +
1

2σ2

∫ 1

0

EP

[(
bPt (Xt)− vP

†

t (Xt)
)2]

dt. (9)

In light of (8) and (9), and because drift functions are more amenable to modeling and estimation
than path measures, it is convenient to recast the steps of our AMP scheme as iterative computations
of drifts associated to DKL projections. The following result is an immediate consequence of (8):
Proposition 4.2. The direct DKL projection of P† onto the space D(π, ·) is given by the unique path
measure P with initial marginal π and forward drift fP

t equal to the drift vP
†

t of P†.

In our AMP scheme, we employ Proposition 4.2 by taking P = P2k+1 ∈ D(π, ·) to have drift equal
to that of P† = P2k for each k ≥ 0.

Projection (7). As before, we are interested in computing the associated time-symmetric drift, rather
than the path measure itself. To this end, let π be a probability distribution on Rn, and let P ∈ D(π, ·)
and P† ∈ S be path measures corresponding to diffusion processes. Suppose we seek to minimize
DKL(P ∥ P†) over all P† ∈ S. Using (8) and (9), we can write DKL(P ∥ P†) explicitly in terms of the
forward and backward drift functions of the SDE corresponding to the path measures P and P†. First,
we can combine (8) and (9) to rewrite DKL(P ∥ P†) in a time-symmetric formulation as follows:

DKL(P ∥ P†) = C +
1

4σ2

∫ 1

0

EP

[(
fP
t (Xt)− vP

†

t (Xt)
)2

+
(
bPt (Xt)− vP

†

t (Xt)
)2 ]

dt, (10)

where C is a constant. A key benefit of considering the reverse DKL projection is that the expectations
in (8) and (9) are taken with respect to the fixed path measure P, and not with respect to the varying
P†. Using calculus of variations, we can then compute a closed-form expression for the drift of the
minimizer of DKL(P ∥ P†) over P† ∈ S. Note that the sum of squares inside the expectation on the
right-hand side above is always nonnegative. Consequently, to minimize DKL(P ∥ P†), it suffices to
choose vP

†

t so that it minimizes this sum of squares at each time t. Taking the first variation of this
sum with respect to vP

†

t , setting the result equal to zero, and solving for the optimal vP
†

t , we obtain:

vP
†

t (x) =
1

2

(
fP
t (x) + bPt (x)

)
. (11)

In other words, we have proven the following characterization of the projection (7):
Proposition 4.3. The reverse DKL projection of P onto the space S is a time-symmetric path measure
with drift given by the average of the forward and backward drifts of P.

It is natural to ask what relation the explicit formula (11) for the minimizer of the reverse DKL pro-
jection (7) has to the minimizer of the direct DKL projection (5) in symmetrized IPFP. The following
proposition establishes that these two minimizers agree to first order (see proof in Appendix A).
Proposition 4.4. Let v⋆t be the drift corresponding to the minimizer of the DKL projection (5). Then

v⋆t (x) =
1

2

(
fP
t (x) + bPt (x)

)
+O

(
∥fP

t (x)− bPt (x)∥2
)
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For alternating minimization schemes, like (6)-(7), some convergence results were established by
Csiszár and Tusnády [1984]. For instance, their Theorem 3 implies that the sequence whose (2k+1)-
th term is DKL(P2k+1 ∥ P2k) and whose (2k + 2)-th term is DKL(P2k+1 ∥ P2k+2) monotonically
decreases to a limiting value equal to

DKL(D(π, ·),S) := inf
P∈D(π,·)
P†∈S

DKL(P ∥ P†).

But this limiting value is zero, as the intersection D(π, ·) ∩ S is nonempty. Thus, the sequence of
iterates Pk obtained by our AMP actually converges to a time-symmetric path measure with desired
marginals (in situations where alternating projections are performed onto nonintersecting sets, conver-
gence is much trickier to establish; e.g., for discrete probability measures, it was proven by Csiszár
and Tusnády [1984] that the odd-numbered iterates converge, but the even-numbered ones may not).

The limit of our alternating scheme, while it exists, may not necessarily coincide with that of IPFP,
because direct DKL projections encourage mean-seeking behavior, whereas reverse DKL projections
encourage mode-seeking behavior. This concurs with an observation of Kurras [2015] in the static
case, where they note that taking the arithmetic mean of the transport matrix and its transpose to
perform the symmetrization step can cause the method to converge to a limit different from the
optimal one. So far, we proved that our reversed symmetrization update agrees with the direct
DKL projection to first order. Thus, we expect that our alternating scheme converges to a good
approximation of the Schrödinger bridge. We confirm this expectation in two different ways. First, we
show that the limit of our approximate scheme is close to the Schrödinger bridge in the Gaussian case
and is numerically indistinguishable from the result of IPFP; see Fig. 2 and 6. Second, we formulate
reasonable hypotheses under which the difference between the mirror Schrödinger bridge and the
limit of our alternating scheme, i.e., the mirror bridge, can be explicitly bounded; see Appendix B.

4.3 Practical Algorithm Algorithm 1 MIRROR BRIDGE

1: for k ∈ {0, . . . ,K − 1} do
2: while not converged do
3: Sample Xj

0 ∼ π and σj ∈ R from
[σmin, σmax] for j ∈ {0, . . . ,M − 1}.

4: Compute trajectories {Xj
i}

M−1,N−1
i,j=0 via

(13) using f(x) = vθ
2k

t (x) as in (11).
5: Do gradient step on θ2k+1 using (14).
6: end while
7: end for
8: Output: vθ

⋆

t

We now describe an algorithm to solve the mir-
ror bridge problem numerically, based on our
AMP scheme from §4.2. We choose our refer-
ence path measure P0 ∈ S to be associated to
an Ornstein-Uhlenbeck process Xt given by the
dXt = −αXtdt+ σdWt, for α > 0.

Recall that our AMP scheme alternates between
direct DKL projections on the set of path mea-
sures with initial marginal π and reverse DKL

projections on the set of time-symmetric path
measures. We now explain how each of these projections is computed in practice. Our algorithm then
follows by iteratively applying this pair of projections and is summarized in Algorithm 1.

As is evident from our analysis of the reverse DKL projection, it does not suffice for us to know only
the forward drift associated to our path measure iterates. We need to know the backward drift bPt too,
but in practice, we do not have access to it. We use trajectory caching to estimate the backward drift
bPt . Trajectory caching is principled on the fact that bPt can be expressed in terms of the expected
rate of change in Xt over time. Concretely, we have the following formula, which can be taken as a
formal definition of the backward drift of a diffusion process:

bP1−t(x) = lim
γ→0

E
[
Xt−γ −Xt

γ

∣∣∣∣ Xt = x

]
. (12)

To apply (12) in practice, take a positive integer M and let {γi}Mi=1 be a sequence of M discrete
time steps with sequence of partial sums {γ̄i}Mi=1. Then we construct a discrete representation
of the stochastic process Xt by using the Euler-Maruyama method to generate a collection of N
sample trajectories {Xj

i}
M−1,N−1
i,j=0 starting at the initial distribution π in accordance with the SDE

dXt = fP
t (Xt)dt+ σdWt, where we know the forward drift fP

t because we matched it to the drift
of P†. Explicitly, we have for all i ∈ {0, . . . ,M − 2} and j ∈ {0, . . . , N − 1} that

Xj
i+1 = Xj

i + fP
γ̄i
(Xj

i )γi + σj√γiZ
j
i , (13)
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Figure 2: For each method, we plot the mean (left) and variance (middle) obtained for the terminal
samples, i.e. samples obtained at time t = T , as well as the covariance (right) of the joint distribution,
versus the number of outer iterations, averaged over 5 trials.

where Zj
i ∼ N (0, I). The limiting quantity in (12) is then leveraged as the target of the loss function

used to train a neural network vθt , which approximates the backward drift bPt for a specified range of
σ values [σmin, σmax]. Specifically, we define the loss ℓ in terms of the optimization parameter θ by

ℓ =
1

N

M−1∑
i=1

N−1∑
j=0

∣∣∣∣∣∣∣∣vθγ̄i+1
(Xj

i+1)−
Xj

i −Xj
i+1

γi+1
−
(
fP†

γ̄i
(Xj

i+1)− fP†

γ̄i
(Xj

i )
) ∣∣∣∣∣∣∣∣2 (14)

Observe that the first two terms in the loss constitute the difference between the drift and the
infinitesimal rate of change of the process Xt, i.e., the discretization of the difference between the
left- and right-hand sides of (12). The network parameters θ are then learned via gradient descent
with respect to the loss function ℓ(θ). The resulting function vθt , where θ minimizes the loss ℓ(θ),
approximates the desired backward drift, as is suggested by De Bortoli et al. [2021, Proposition 3].
In our AMP scheme, we employ (11) by averaging the forward and backward drifts corresponding to
P = P2k+1 to obtain the drift of the symmetric path measure P† = P2k+2. Practically speaking, if
the drift of P2k is a parametrized by a neural network vθ

k

t for each k, we take the drift of P2k+1 to be
the average output of the networks vθ

k−1

t and vθ
k

t . In Algorithm 1, we denote the limiting drift as vθ
⋆

t .

Sampling with in-distribution variation. We provide a short intuitive explanation of why our
method allows for resampling with prescribed proximity to an input sample in Appendix C.

5 Experiments

We demonstrate the utility of our method on a number of conditional resampling tasks, illustrating
how it can be used to produce sample variations with control over the proximity to the initial sample.

Gaussian transport. We start by comparing our method with two alternative algorithms, DSB
[De Bortoli et al., 2021] and DSBM [Shi et al., 2023], when applied to the mirror Schrödinger bridge
of multi-dimensional Gaussians. Fig. 2 shows that, in the case of dimension d = 50, as the number
of outer iterations increases, the empirical convergence of our method performs on par with both
DSB and DSBM with the added benefit that each outer iteration with our algorithm requires half the
training iterations. Recall that our method trains a single neural network to model a time-symmetrized
drift function vθt rather than a neural network for each of the forward and backward drift functions.
More details on the derivation of the analytical solution, as well as information on parameters, can be
found in Appendix D. Additional results for dimensions d = 5, 20 can be found in Fig. 6.

2D datasets. To illustrate the behavior of our method, we use our algorithm to resample from
2-dimensional distributions Pedregosa et al. [2011]. Unlike the mirror Schrödinger bridge with
Gaussians, an analytical solution with these more general distributions is not known. We consider
learning the drift function vθt associated with the mirror bridge that flows samples from pdata to itself.

Initial samples Initial samplesσ = 1 σ = 1σ = 9 σ = 5
Figure 3: Samples (color based on initial position) obtained using our method with various σ values.
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Figure 5: The control over in-distribution variance effect of σ for a variety of initial samples (first
row) from the empirical distribution of images in the CelebA dataset.

The goal is to obtain new samples that are in the distribution pdata but exhibit some level of variation,
i.e., in-distribution variation, correlated to the noise coefficient σ in the diffusion process.

In Fig. 3, we show the result of flowing samples via the mirror bridge with varying values of noise.
We observe that the in-distribution variation of data points is controlled by the choice of σ value,
which can indeed be detected by the mixing of colors, or lack of thereof, in each terminal distribution
shown. For instance, on the right, we find mixing from samples between the inner and outer circles
with the largest σ value, compared with no mixing between circles with the smallest σ value.

Image resampling. We train our algorithm on the MNIST LeCun et al. [1998] and CelebA Liu et al.
[2015] datasets. Training parameters and architecture for all experiments can be found in Appendix E.
Our results show that mirror bridges can be used to produce new samples from an image dataset with
control over the proximity to the initial sample. In Fig. 4, we resample from MNIST using varying
levels of noise (see also Fig. 11). Pushforward images obtained with a lower σ value (middle) are
visually closer to the initial images (top) than the ones obtained with a higher σ value (bottom).

Initial sample

Figure 4: Samples produced by our mir-
ror bridges for MNIST, using σ = 1, 2.

Fig. 5 shows the same control over in-distribution variation
of pushforward samples using the RGB dataset CelebA.
In each column, we exhibit a different sample from the
dataset and, in each row, we show the corresponding push-
forward obtained for different noise values. These results
can be obtained without retraining the neural network. The
typical metric to assess resampling quality for the image
generation case is the Fréchet inception distance (FID)
score, which we have plotted against training iterations.
We observe FID scores decreasing with training iterations.

Fig. 12 includes more results using the CelebA dataset, and Fig. 7 shows the nearest neighbors in
the dataset to the generated images. In the latter, the nearest neighbor of the generated sample is the
initial sample itself, and the generated sample is distinct from all of its nearest neighbors, showing
that our model does not simply regurgitate nearest neighbors of the initial sample as proximal outputs.
Additional experiments, including a comparison to alternative methods for image resampling, further
evaluation metrics, results on path regularity and control over proximity, are presented in Appendix F.

6 Conclusion

By studying an overlooked version of the Schrödinger bridge problem, which we coin the mirror
bridge, we present an algorithm to sample with control over the in-distribution variation of new
data points. Our method is flexible and requires fewer training iterations than existing alternatives
[De Bortoli et al., 2021, Shi et al., 2023] designed for the general Schrödinger bridge problem. As a
technique for estimating Schrödinger bridges in the mirror case, our method presents an advantage
over mirror interpolants [Albergo et al., 2023], since optimizing the relative entropy of such an
interpolant results in a min-max optimization problem that is typically intractable [Shaul et al., 2023].
Our method is numerically tractable and well-principled, and it cuts down training in applications
where control over in-distribution variation is desired. On the application front, we demonstrate that
our method is a flexible tool to obtain new data points from empirical distributions in a variety of
domains, including 2-dimensional measures and image datasets. In future work, we hope to study
of a potential σ threshold for a sample to change class when resampled or to make “class” a neural
network input, similar to text prompting in image generation.
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A Proof of Proposition 4.4

As before, we are interested in computing the associated time-symmetric drift, rather than the path
measure itself. To this end, let π be a probability distribution on Rn, and let P ∈ S and P† ∈ D(π, ·)
be path measures corresponding to diffusion processes. Suppose we seek to minimize DKL(P ∥ P†)

over all P ∈ S. Let a±t = 1
2 (f

P†

t ± bP
†

t ), and recall from (10) that we have the following expression:

DKL(P ∥ P†) = C +
1

4σ2

∫ 1

0

EP

[(
vPt (Xt)− fP†

t (Xt)
)2

+
(
vPt (Xt)− bP

†

t (Xt)
)2]

dt

= C +
1

2σ2

∫ 1

0

EP

[(
vPt (Xt)− a+t (Xt)

)2
+ a−t (Xt)

2

]
dt,

where C is a constant. We now apply calculus of variations to compute the desired series expansion
for the drift of the minimizer of DKL(P ∥ P†) over P ∈ S. To take the first variation of this DKL

divergence with respect to vPt , we apply the product rule, first differentiating the argument of the
expectation, and then differentiating the expectation operator itself. The calculation of the first
variation of this sort of DKL divergence has been performed before in the literature; see, e.g., [Nüsken
and Richter, 2021, section A.2, proof of Proposition 4.3] for the full details. We reproduce the
calculation here for the sake of completeness.

Let ϵ > 0, and let h be a test function. Let Pϵ denote the path measure corresponding to the perturbed
drift function vPϵ

t := vPt + ϵh. Then using the Radon-Nikodym derivative dPϵ/dP to rewrite the
expectation in Pϵ in terms of an expectation in P, we find that

∂

∂ϵ
EPϵ

[∫ 1

0

(
vPϵ
t (Xt)− a+t (Xt)

)2
+ a−t (Xt)

2dt

]∣∣∣∣
ϵ=0

= (15)

∂

∂ϵ
EP

[
dPϵ

dP

∫ 1

0

(
vPϵ
t (Xt)− a+t (Xt)

)2
+ a−t (Xt)

2dt

]∣∣∣∣
ϵ=0

=

EP

[
dPϵ

dP

∣∣∣∣
ϵ=0

(∫ 1

0

2h(Xt) ·
(
vPt (Xt)− a+t (Xt)

)
dt

+

∫ 1

0

((
vPt (Xt)− a+t (Xt)

)2
+ a−t (Xt)

2

)
dt ·

(
∂

∂ϵ
log

dPϵ

dP

)∣∣∣∣
ϵ=0

)]
.

where the second step above follows from the Radon-Nikodym Theorem, and where the third step
above follows from the product rule and the definition of the logarithmic derivative.

To simplify the right-hand side of (15), we first note that (dPϵ/dP) |ϵ=0= 1. Secondly, we can apply
Girsanov’s Theorem to obtain a formula for dPϵ/dP as follows:

dPϵ

dP
= exp

(
−ϵ

∫ 1

0

h(Xt)dWt −
ϵ2

2

∫ 1

0

|h(Xt)|2dWt

)
. (16)

Differentiating the logarithm of (16) with respect to ϵ and setting ϵ = 0 then yields(
∂

∂ϵ
log

dPϵ

dP

)∣∣∣∣
ϵ=0

= −
∫ 1

0

h(Xt)dWt. (17)

Let T denote the linear map defined on test functions by h 7→ −
∫ 1

0
h(Xt)dWt. Then combining the

right-hand side of (15) with (17), we obtain the following expression:∫ 1

0

EP

[
2h ·

(
vPt (Xt)− a+t (Xt)

)
+

((
vPt (Xt)− a+t (Xt)

)2
+ a−t (Xt)

2

)
· T (h)

]
dt. (18)

For the quantity in (18) to be zero for every possible choice of the test function h, we must have that
the linear map

h 7→ 2h ·
(
vPt (Xt)− a+t (Xt)

)
+

((
vPt (Xt)− a+t (Xt)

)2
+ a−t (Xt)

2

)
· T (h) (19)

is identically zero. Setting this map equal to zero and solving for vPt yields the desired first-order
approximation vPt = a+t +O(||a−t ||2).
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B Heuristic Bound on Our Estimation

To understand whether our AMP yields a viable estimate of the MSB, it would be useful to be able
to quantify the difference between the limit of our AMP and the MSB. In this section, we provide
conditions on the marginal distribution π and on the reference path measure P0 under which we can
explicitly bound the difference. The conditions we include here are modeled after the work of Vargas
et al. [2021], who also develop schemes for approximating Schrödinger bridges; see, e.g., Conjecture
1 in their Appendix F.

To do this, we first introduce the following terminology: given a path measure P, define the following
three projections:

Π(P) = argmin
Q∈D(π,·)

DKL (Q ∥ P) (direct)

Φ(P) = argmin
Q∈S

DKL (Q ∥ P) (direct)

Ψ(P) = argmin
Q∈S

DKL

(
P ∥ Q

)
, (reverse)

Let ∥ · ∥TV denote the total variation metric on path measures. We then have the following result.

Proposition B.1. Let the iterates of our AMP be denoted by Pk, and let the iterates of symmetrized
IPFP be denoted by Qk. Choose a compact ball C in the total variation metric containing all of the
iterates Pk and Qk. Suppose the following conditions hold:

• On C, the projection (4) is a contraction, meaning that it is Lipschitz continuous with respect
to the total variation metric as a function of the second argument with Lipschitz constant
L < 1. I.e., ∥Π(P1)−Π(P2)∥TV ≤ L · ∥|P1 − P2∥|TV for every choice of path measures
P1, P2 ∈ C.

• On C, the projection (5) is non-expansive, meaning that it is Lipschitz continuous with
respect to the total variation metric as a function of the second argument with Lipschitz
constant L′ ≤ 1. I.e., ∥Φ(P1)− Φ(P2)∥TV ≤ L′ · ∥|P1 − P2∥|TV for every choice of path
measures P1, P2 ∈ C.

• For some ε > 0, we have ∥Φ(Π(P))−Ψ(Π(P))∥TV < ε for every choice of P ∈ C.

Then the total variation between the MSB and the limit of our AMP is bounded above by ε/(1− L).

Proof. We claim that the three conditions imply the following inequality:

∥P2k+3 −Q2k+3∥TV ≤ L(ε+ ∥P2k+1 −Q2k+1∥TV). (20)

To see why the claim holds, notice that the first condition implies

∥P2k+3 −Q2k+3∥TV ≤ L(∥P2k+2 −Q2k+2∥TV). (21)

Next, by an application of the triangle inequality followed by an application of the second and third
conditions, we have

∥P2k+2 −Q2k+2∥TV ≤ ∥Ψ(P2k+1)− Φ(Q2k+1)∥TV (22)

≤ ∥Ψ(P2k+1)− Φ(P2k+1)∥TV + ∥Φ(P2k+1)− Φ(Q2k+1)∥TV

≤ ε+ L′ · ∥P2k+1 −Q2k+1∥TV.

Combining the bounds (21) and (22) with the assumption that L′ ≤ 1 yields (20). Solving this
recursive inequality and letting k → ∞ then yields the bound in the proposition.

We now explain the conditions stipulated in Proposition B.1 in words. The existence of the compact
ball C is guaranteed because both sequences of iterates converge. The first two conditions, that the
projection (4) is a contraction and that the projection (5) is non-expansive, are to be expected because
metric projection maps onto convex sets are non-expansive (i.e., are Lipschitz with constant ≤ 1);
note that this heuristic is not a proof of the condition, because the direct projection is computed using
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the DKL divergence, which is not a metric. The Lipschitz constant L depends only on the choice of
the marginal π, which in our practical implementation corresponds to the data distribution.

As for the third condition, this roughly corresponds to stipulating that the reference process is not
too far from the MSB, so that the reverse and direct DKL projections of odd-numbered iterates are
not too different from each other. Depending on how close L is to 1, the parameter ε can be made to
be sufficiently small by choosing the reference process accordingly so as to ensure that the limit of
the AMP is within a prescribed distance from the MSB. If one does not have the freedom to choose
the reference process but would still like to obtain an estimate of the MSB quickly, one can apply a
few iterations of symmetrized IPFP to obtain an intermediary time-symmetric process P̃ that is close
enough to the MSB; this intermediary process can then be used as a reference for an application of
our AMP. If P̃ is sufficiently close to the MSB, then the third condition will be satisfied on the AMP
iterates for a given ε > 0. This mixed algorithm enjoys the speed improvement provided by our AMP,
while retaining a prescribed level of accuracy.

C Sampling with In-Distribution Variation

Given such a sample x0 ∼ π, we solve the SDE corresponding to the Schrödinger bridge to push
x0 forward in time, arriving at a final sample x1 ∈ π. We want x1 to be a variation of x0, where the
proximity of x1 to x0 correlates with the size of the noise coefficient σ. Justifying this mathematically
requires understanding how the conditional distribution X1 | X0 = x0, specifically its mean and
variance, depend on σ. While these quantities do not in general have closed form expressions, it is
possible to compute them exactly in the case where π = N (0, I) is a 1-dimensional Gaussian.

In this case, let Xt be the diffusion process associated to the Schrödinger bridge, where the reference
path measure corresponds to an Ornstein-Uhlenbeck process with drift coefficient −α. In Proposition
D.1 (see Appendix D for the statement and proof) we determine the joint distribution of X0 and X1

in terms of a quantity β, which is a function of α and σ that grows approximately as 1 + c(α)× σ2

for some function c. Let p(x, y) denote the probability density function of the joint distribution of
X0 and X1, and recall that p(x, y) is the product of the conditional PDF of X1 | X0 with the PDF of
X0. Using this fact in conjunction with Proposition D.1, the PDF of X1 | X0 = x0 is

p(x0, y)

pX0
(x0)

= exp
(
− 1

2(1− β2)
(x2

0 − 2βx0y + y2) +
x2
0

2

)
.

From the right-hand side, we see that X1 | X0 = x0 is Gaussian with mean x0(β/1−β2) and
variance 1 − β2. Thus, changing the noise value σ alters both the mean and variance of samples
pushed forward via the Schrödinger bridge. Indeed, in the case of the mean, it grows inversely
proportional to σ2. Consequently, if σ < 1, then we should expect the Schrödinger bridge to
push samples away from the distribution mean, whereas if σ > 1, then the opposite occurs, and
samples experience mean reversion. As for the variance, note that 1 − β2 grows at least as fast
as σ2, so we should expect the Schrödinger bridge to produce samples with spread that increases
as σ increases. We expect that similar effects occur even when the marginal distribution π is not
Gaussian: i.e., the value of σ should be directly related to the proximity of generated samples in
an analogous way. As our method gives an approximation of the true mirror Schrödinger bridge,
we expect the mirror bridge to inherit these properties.

D Analytical Solution to MSB in the Gaussian Case

Proposition D.1. Consider the static Schrödinger bridge problem with initial and final marginals
equal to the d-dimensional Gaussian distribution with zero mean and unit variance, where we take
the reference measure π0 corresponding to the OU process dXt = −αXtdt+ σdWt running from
t = 0 to t = 1. The solution π∗ to this problem is a 2d-dimensional Gaussian with zero mean and
covariance matrix Σ given by

Σ =

(
Σ00 Σ01

Σ10 Σ11

)
=

(
I βI
βI I

)
, where β =

σ2(1− e2α) +

√
16e2αα2 + σ4 (1− e2α)

2

4αeα

Proof. We follow the proof of Proposition 46 of De Bortoli et al. [2021], which established the
corresponding result in the case where the reference process has zero drift. Imitating the proof of
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Proposition 43 of De Bortoli et al. [2021], we see that the static Schrödinger bridge π∗ exists and is a
2d-dimensional Gaussian. That the mean equals zero follows from the fact that both marginals have
zero mean. The rest of the proof is devoted to determining the covariance matrix Σ of π∗.

The fact that marginals have unit variance implies that Σ00 = Σ11 = I . To compute Σ01 and Σ10,
we start by computing the probability density function (PDF) p0(x, y) of the reference measure π0,
where x, y ∈ Rd. Recall that p0(x, y) is the product of the conditional PDF of X1 | X0 with the PDF
of X0. Thus, we have

p0(x, y) = pX1|X0
(x, y)× pX0

(x).

Note that X0 has zero mean and unit variance, so up to normalization we have

pX0(x) ∝ e−
x2

2 .

On the other hand, the mean and variance of the conditional distribution X1 | X0 are computed in
section II of Trajanovski et al. [2023], where it is shown that they are respectively given by

xe−α and σ2
1 :=

σ2

2α
(1− e−2α).

It follows that

pX1|X0
(x, y) ∝ e

− 1

2σ2
1
(y−e−αx)

2

.

Combining these calculations, we conclude that the joint distribution has PDF given by

p0(x, y) ∝ e−
1
2 ((1+σ−2

1 e−2α)x2−2σ−2
1 e−αxy+σ−2

1 y2).

This distribution is evidently a Gaussian with zero mean and covariance matrix Σ0 given by

Σ0 =

(
I e−αI

e−αI (σ2
1 + e−2α)I

)
.

Note in particular that the variance of the marginal of π0 at t = 1 is equal to the coefficient
of the bottom-right entry of Σ0, which is σ2

1 + e−2α. Now, the KL divergence between a 2-
dimensional Gaussian distribution π̃ with zero mean and covariance matrix Σ̃ and the distribution π0

is given explicitly by

DKL(π̃ ∥ π0) =
1

2

(
log

detΣ0

det Σ̃
− d+Tr

(
Σ0−1

Σ̃
))

.

If we take Σ̃ to be of the form

Σ̃ =

(
I S
ST I

)
,

which matches the form of the covariance Σ for π∗, then

DKL(π̃ ∥ π0) =
1

2

(
− log det Σ̃− 2e−ασ−2

1 Tr(S) + C
)

where C ∈ R is a nonzero constant independent of Σ̃. As argued in the proof of Proposition 46
of De Bortoli et al. [2021], we can assume S = ST is a symmetric matrix, as doing so will only
decrease DKL(π̃ ∥ π0), so S is diagonalizable. Let λ1, . . . , λd denote the eigenvalues of S, counted
with multiplicity. Using the well-known formula for the determinant of a block 2× 2 matrix, we find
that

det Σ̃ = det(I − S2) =

d∏
i=1

(1− λ2
i ).

Thus, we obtain

DKL(π̃ ∥ π0) =
1

2

d∑
i=1

f(λi) + C, where f(x) = − log(1− x2)− 2e−ασ−2
1 x.

Note in particular that since Σ̃ is a covariance matrix, it is positive semi-definite, and so its eigenvalues
1− λ2

i must be nonnegative, implying that |λi| ≤ 1 for each i.
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Figure 6: For each method, we plot the mean (left) and variance (middle) obtained for the terminal
samples, i.e. samples obtained at time t = T , as well as the covariance (right) of the joint distribution,
versus the number of outer iterations, averaged over 5 trials. Top: d = 5. Bottom: d = 20.

Minimizing DKL(π̃ ∥ π0) then amounts to take λ1 = · · · = λd = β in such a way that f(β) is
minimized. Observe that the equation

f ′(β) =
2β

1− β2
− 2e−ασ−2

1 = 0

is solved by

β =
σ2(1− e2α)±

√
16e2αα2 + σ4 (1− e2α)

2

4αeα
.

We then choose the sign to be + to ensure that |β| ≤ 1.

E Implementation Details

In this section we give further details on our experimental setup. Akin to Song and Ermon [2020,
Technique 5] and De Bortoli et al. [2021, Technique 6], we improve performance of Algorithm
1 by implementing the exponential moving average (EMA) of network parameters. We run our
experiments on a NVIDIA GeForce RTX 3090 GPU with 24GB of memory.

E.1 Gaussian Transport

We use the MLP large network from [De Bortoli et al., 2021] for DSB and DSBM in all Gaussian
transport experiments. For our method, we modify this network to take σ as an input. The values of
σ are uniformly sampled from the (inclusive) interval from 1 to 5 for training, and at test time we fix
σ = 1 for all samples to compare with DSB and DSBM, which do not take σ as a network input, but
each use σ = 1 via the SDE discretization. We run the same experiment for dimension d = 5 and
d = 20 (in Fig. 6), and d = 50 (in Fig. 2). The number of samples for all experiments is 10,000. We
use 20 timesteps and train for 10,000 inner iterations for each of 20 outer iterations.

E.2 2D Datasets

We modify the network architecture with positional encoding from [Vaswani et al., 2017], which
is used by De Bortoli et al. [2021], to take values of noise σ rather than tuples of only X and t.
The values of σ are concatenated to the spatial features before the first MLP block is applied. This
modified network is used to parametrize our drift function. We use Adam optimizer with learning rate
10−4 and momentum 0.9. We train each example for 10,000 inner iterations per outer iteration of the
algorithm. Fig. 3 shows the terminal samples obtained for outer iteration 30 for all example datasets.
The noise values σj are sampled uniformly in the range from 1 to 9 for training. At test time, a fixed
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σ = 1 σ = 2Nearest neighbors in dataset Nearest neighbors in dataset

Figure 7: For our generated results (first and seventh columns), we show the five nearest neighbors in
the CelebA dataset as measured through the features extracted by ResNet50 [He et al., 2016].

σ value is chosen for all sample trajectories. We train with 10,000 samples, which are refreshed each
1,000 iterations. We use 20 timesteps of size 0.01 each. All 2-dimensional experiments run on CPU.

E.3 Image Resampling

For the image dataset experiments, we modify the U-Net architecture used in [De Bortoli et al.,
2021, Shi et al., 2023] to take values of noise σ. Each value σj is expanded to match image size and
concatenated to channels of their corresponding sample image j before the input block is applied.
For all image experiments we follow the timestep γ schedule used in De Bortoli et al. [2021] with
γmin = 10−5 and γmax = 0.1. We use Adam optimizer with learning rate 10−4 and momentum 0.9.
Experiments with image datasets were run on limited shared GPU resources; lower-resolution image
sizes and number of samples in cache were chosen accordingly.

MNIST. For the experiment in Fig. 4, we use 10,000 cached images of size 28× 28; the batch size is
128 and the number of timesteps is 30. The noise values are sampled uniformly in the interval from 1
to 5 (inclusive) during training. We train for 5,000 iterations per outer iterations, and cached samples
are refreshed every 1,000 inner iterations. The terminal samples shown are for outer iteration 8.

CelebA. In Fig. 5 and 12, we use 300 cached images of size 64× 64 and batch size 128. The cache is
refreshed every 100 inner iterations and we train for 5,000 iterations per outer iterations. The number
of timesteps is 50; the σ values are uniformly sampled in the interval from 1 to 3. The terminal
sample images are shown for outer iteration 15. The FID score in Fig. 5 is computed using 300
images.

F Additional Experimental Results

F.1 Control Over Sample Proximity

We define proximity of samples using pixel-wise L2 norm as our choice of distance metric. In Fig. 8
(left), we demonstrate how larger values of σ effectively produce pushforward samples that are farther
in this distance metric, compared to samples generated with smaller values of σ. This experiment
expands the results shown in Fig. 3 to the case of resampling from image distributions. In particular,
the mean and spread of the histograms in Fig. 8 (right) show that larger values of sigma correspond
to higher average distance values relative to the initial sample, as well as greater variation among
these distances.

F.2 Sample Path Regularity

We present empirical results on the regularity of path measures produced by our method. Specifically,
in Fig. 8 (right), we give a histogram for the values of a metric defined by taking the ratio of
total displacement to total path length for different values of σ. For a given sample trajectory
{Xi}M−1

i=0 , this metric is explicitly computed by dividing ∥X0 −XM−1∥2 (total displacement) and∑
k ∥Xk+1 −Xk∥2 (total path length). The greater the value of this metric, the greater the variation
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in the trajectory; hence, smaller values of this metric are suggestive of greater sample path regularity.
We find, as expected, that sample path regularity decreases as σ increases.

F.3 Integrity of Initial Distribution

We compute Chamfer distances as a means of measuring the proximity of the pushforward distribu-
tions exhibited in Fig. 3 to the corresponding initial distributions. In the mirror case, the pushforward
distribution should match the initial distribution, and the Chamfer distance between them should
therefore decay as the number of iterations grows. In Fig. 9, we demonstrate how the Chamfer
distance decays over outer iterations of our method for the same 2D distribution with different values
of σ (left), as well as how the Chamfer distance decays for different datasets with fixed σ value
(right).

F.4 Comparison to Alternative Methods

We compare our method with DSB and DSBM for image resampling with the MNIST dataset as
the initial and final marginal distribution. For this experiment, we use the implementation for DSB
and DSBM-IPF available in the code repository for Shi et al. [2023]. We implement our algorithm
based on the architecture provided, only modifying the model to take on σ as an input parameter
for our method. We test all three methods with the same set of training parameters as described in
Appendix E.3. We train our model with σ = 1 fixed to match the noise value in the SDE for the other
two methods, which do not take σ as a model input.

A larger σ produces more distant outputs... ...and takes more convoluted paths to get there
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Figure 8: On the left: Two histograms demonstrating how image samples generated with larger σ
correspond to less proximal samples relative to the initial image sample. On the right: Two histograms
show the inverse ratio between displacement and total path length of sample paths as a metric of path
regularity.
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Figure 9: On the left: Three curves, each corresponding to a different σ value, showing convergence
using Chamfer distance for the same 2D dataset (shown in Fig. 3). On the right: Three curves, each
corresponding to a different 2D dataset, showing convergence for a fixed σ value.
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Figure 10: On the left: FID scores of pushforward samples versus outer iterations (single run)
produced by our method, by DSB, and by DSBM, for a mirror bridge with the MNIST dataset as the
marginal distribution. Solid lines correspond to backward models and dashed lines to forward models.
On the right: Result of image resampling at outer iteration 20. For each method and drift direction,
the initial samples are displayed on the upper row and the pushforward samples on the lower.

Table 1: Average runtimes for the experiment in Fig. 10

Ours DSB DSBM-IPF

Total 2.64 5.25 12.47 hrs
Outer Iter. 7.94 15.7 37.41 min
Inner Iter. 0.059 0.055 0.209 s
Inference 2.009 1.554 1.002 s

We provide FID scores for each method in Fig. 10. We observe that for DSB and DSBM, the forward
and backward models result in pushforward samples of different quality. In particular, sample quality
for the forward model is significantly lower than that of the backward. This indicates that neither of
these methods converge to the mirror Schrödinger bridge for the given number of iterations, because
the drift function for this bridge is necessarily time-symmetric, i.e., the forward and backward drifts
must be equal to each other. In contrast, our algorithm provides time-symmetry by construction: a
single model is trained and forcibly “symmetrized" at each outer iteration via the drift averaging
procedure described in §4.3.

Also in Fig. 10, we present a breakdown of runtime for each method obtained for the same experiment.
Our method has significantly lower total runtime and average outer training iteration time. The latter
is not surprising, considering that one of the key features of our algorithm is to eliminate training
for one of the projection steps taken; recall that we perform the reverse DKL projection completely
analytically. We observe that the average inference time during training, however, is higher with our
method. Overall, in this particular experiment, we see that our method makes a trade-off between
a small reduction in sample quality for a significant speed-up in training, while also preserving the
time-symmetry of the solution.

20



F.5 Additional MNIST Results
σ = 1 σ = 3Initial sample

Figure 11: Additional results for the empirical distribution of handwritten digits from which the
examples in Fig. 4 are obtained.

F.6 Additional CelebA Results
Initial sample σ = 1

σ = 3σ = 2

Figure 12: Additional results for the empirical distribution of images in CelebA from which the
examples in Fig. 5 are obtained.
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