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Fig. 1. We show the time evolution of the Fokker-Planck equation under a certain flow on the discrete sphere with 81,920 triangle faces and 40,962 vertices,
obtained using our framework. Our method can be used for any equation in a class of second-order parabolic PDE on triangle mesh surfaces.

We introduce a framework for solving a class of parabolic partial differential

equations on triangle mesh surfaces, including the Hamilton-Jacobi equation

and the Fokker-Planck equation. PDE in this class often have nonlinear or

stiff terms that cannot be resolved with standard methods on curved triangle

meshes. To address this challenge, we leverage a splitting integrator com-

bined with a convex optimization step to solve these PDE. Our machinery

can be used to compute entropic approximation of optimal transport dis-

tances on geometric domains, overcoming the numerical limitations of the

state-of-the-art method. In addition, we demonstrate the versatility of our

method on a number of linear and nonlinear PDE that appear in diffusion

and front propagation tasks in geometry processing.

CCS Concepts: • Mathematics of computing → Partial differential
equations; • Computing methodologies → Shape analysis.

Additional KeyWords and Phrases: diffusion, optimal transportation, Hamilton-

Jacobi, Fokker-Planck

1 INTRODUCTION
The analysis of partial differential equations (PDE) is a ubiquitous

technique in computer graphics, geometry processing, and adjacent

fields. In particular, parabolic PDE describe a wide variety of phe-

nomena. For example, instances of the Hamilton-Jacobi equation

model the time evolution of front propagation and the evolution of

functions undergoing nonlinear diffusion. As another example, the

Fokker-Planck equation describes the evolution of density functions

driven by stochastic processes. Each of these equations has a long
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history as a means to study various problems in computer graphics,

including modeling flames and fire [Nguyen et al. 2002], stochastic

heat kernel estimation [Aumentado-Armstrong and Siddiqi 2017],

medial axis detection [Du and Qin 2004], and texture synthesis

[Witkin and Kass 1991]. Hence, methods to solve this class of PDE

over geometric domains are central in geometry processing.

Myriad numerical algorithms have been proposed for solving PDE

in geometry processing. Unfortunately, the most popular algorithms

are unsuitable for important regimes, such as capturing infinitesi-

mal or nonlinear phenomena. An interesting example involves the

convolutional Wasserstein distance method for barycenter compu-

tation [Solomon et al. 2015]. The aforementioned method is built on

tiny amounts of diffusion, but relies on heuristics for choosing dif-

fusion times. If the diffusion time step is too small, then the method

leads to numerical inaccuracies, and if the step is too large, then the

method results in approximations that quantitatively appear wrong.

Another example involves nonlinear PDE used to describe certain

types of flows. In this case, the challenge is that explicit integrators

used for these PDE require time step restrictions to avoid numerical

instability, and implicit integration schemes are not equivalent to

solving a single linear system of equations, turning out to be too

expensive.

To address these challenges, we propose a framework leveraging

a splitting integration strategy and an appropriate spatial discretiza-

tion to solve parabolic PDE over discrete geometric domains. The

splitting allows us to leverage the implicit integration of a well-

known PDE, the heat equation, and use a convex relaxation to deal

with the challenging piece of the parabolic PDE. Empirically, our

method overcomes limitations presented by state-of-the-art meth-

ods in geometry processing. We apply our framework to difficult

parabolic PDE: log-domain heat diffusion, the nonlinear𝐺-equation,

and the Fokker-Planck equation, all of which we solve efficiently

on a variety of domains and time steps.
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Contributions. Our main contributions are:

• A numerical framework to solve linear and nonlinear parabolic

PDE on curved triangle meshes with efficiency matching that of

conventional methods in geometry processing.

• A log-domain diffusion algorithm that overcomes known limita-

tions of geometry processing methods relying on tiny amounts

of diffusion, demonstrated on optimal transport tasks.

• An application of our framework to numerical integration of

the 𝐺-equation, which can be used as a component in graphics

pipelines for the simulation of fire and flames.

2 RELATED WORK

2.1 PDE-driven geometry processing
PDE are a fundamental component of many geometry processing

algorithms. PDE-based approaches have been used for surface fair-

ing [Bobenko and Schröder 2005; Desbrun et al. 1999], surface re-

construction [Duan et al. 2004; Xu et al. 2006], and physics-based

simulation [Chen et al. 2013; O’Brien et al. 2002], to cite a few exam-

ples. Hence, there has been a considerable amount of work focused

on developing accurate and robust PDE solvers. The most popular

PDE-based methods, however, such as the “heat method" for geo-

desic distance approximations [Crane et al. 2013], are concerned

with solving linear PDE problems.

2.2 Second-order Parabolic PDE
Second-order parabolic PDE comprise a general extension of the

heat equation. The solutions to PDE in this class are in some ways

related to the solutions of the heat equation; these equations appear

in similiar applications where the object of interest is the density of

a quantity on a domain, evolving forward in time. While the heat

equation is a well-studied PDEwith a wide array of tools available to

solve it on discrete domains, second-order parabolic PDE in general

are more challenging, in particular in the presence of additional

terms that add nonlinearity or chaotic behaviour.

The typical strategy for spatial discretization of second-order

parabolic PDE are Garlekin methods [Evans 2010]. Common numer-

ical integration techniques are finite difference schemes, including

forward Euler, explicit Runge-Kutta formulas, backward Euler, and

the Crank-Nicolson method. Still, many PDE in this family cannot

be efficiently solved on triangle meshes with these discretization

methods. Some of the difficulties that arise include the following:

the strong stiffness of certain equations in this family is not suitable

for methods such as Runge-Kutta [Sommeijer et al. 1998]; and equa-

tions such as the Hamilton-Jacobi do not have a conservative form,

making it difficult to write out fluxes for discontinuous Garlekin

methods adapted to irregular domains [Yan and Osher 2011].

2.2.1 Heat diffusion and entropy-regularized optimal transport. The
entropy-regularized approximation of transport distances provides

a method for solving various optimal transportation problems by

realizing them as optimization problems in the space of probability

measures equipped with the Kullback-Leibler (KL) divergence. We

refer the reader to [Villani 2003] for a complete introduction to

the optimal transportation problem, which roughly seeks to trans-

port all the mass from a source distribution to a target distribution

Fig. 2. Wasserstein barycenters (green) between two distributions on the
unit line (grey) with 1,000 elements for varying pairs of weights. Our method
obtains these barycenters for a tiny amount of entropy, i.e., 𝛾 = 10

−7,
whereas the method in Solomon et al. [2015] fails.

with minimal cost. [Benamou et al. 2015; Cuturi 2013] link entropy-

regularized transport to minimizing a KL divergence.

Cuturi [2013] proposed a fast computational method to com-

pute transport distances using entropic regularization based on

the Sinkhorn algorithm. Solomon et al. [2015] extended this work

by showing that the kernel in the Sinkhorn algorithm for the 2-

Wasserstein distance can be approximated with the heat kernel,

which can be computed using PDE solution techniques over geo-

metric domains. Huguet et al. [2023] presents a similar attempt

at improving Sinkhorn-based methods on discrete manifolds. This

perspective is also echoed in Schrödinger bridge formulations of

transport, whose static form includes an identical substitution of

the heat kernel [Léonard 2014].

We leverage this approximation with the heat kernel over geo-

metric domains, and show in §7.1–7.2 that the numerical challenges

arising for small entropy coefficients can be overcome by using our

framework to solve a certain second-order parabolic nonlinear PDE.

2.2.2 𝐺-equation. The 𝐺-equation is a level-set Hamilton-Jacobi

equation introduced by F.A. Williams in [Williams 1985] to model

turbulent-flame propagation in combustion theory. While some

finite difference schemes have succeeded in solving various cases

of the𝐺-equation on regular grids [Gu et al. 2021; Liu et al. 2013].

Several challenges arise in the curved triangle mesh setting: for

certain values of flow intensity, the constraint on time step—given by

the Courant–Friedrichs–Lewy (CFL) condition—is quite restrictive

on explicit methods; and the nonlinearity of the equation yields an

open problem for implicit methods.

While the 𝐺-equation is well-known in computational fluid dy-

namics (CFD) [Nielsen et al. 2022], it was brought to the computer

graphics community as the “thin-flamemodel" to simulate flame and

fire in [Nguyen et al. 2002]. This work was later extended to model a

wider variety of combustion phenomena in graphics, e.g., see [Hong

et al. 2007]. The time integration implemented in these graphics

pipelines are based on the foundational scheme introduced by Osher

and Sethian [1988], which deals with the aforementioned limitations,

in particular, time step restrictions due to a CFL condition.

As we will show in §7.3, our framework achieves better numerical

stability than this standard scheme for regimes in violation of its

CFL condition, and matches numerical results for regimes within its

CFL condition, where the standard scheme provides a reasonable

approximation of the exact solution.
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Fig. 3. Level-sets of the 𝐺-equation under cellular flow obtained via our
method with varying values of viscosity: 𝜀 = 0, 10

−4, 10
−3, and 10

−2 (from
top to bottom, respectively). See Figure 4 for an illustration of cellular flow.

2.2.3 Fokker–Planck equation. The Fokker-Planck equation is a

linear parabolic partial differential equation describing the time

evolution of the probability density function of a process driven

by a stochastic differential equation (SDE). Processes driven by

SDE and the Fokker-Planck equation appear in applications in com-

puter vision and image processing [Leatham et al. 2022; Smolka and

Wojciechowski 1997]. In the context of computer graphics and ge-

ometry processing, the Fokker-Planck equation and its variants

have been used for texture synthesis based on nonlinear inter-

actions [Witkin and Kass 1991] and stochastic kernel estimation

[Aumentado-Armstrong and Siddiqi 2017].

We show that our framework can be used to solve the Fokker-

Planck equation directly on curved triangle meshes, in contrast to

using its SDE formulation. In this way, our work lays the foundation

for a new approach to using stochastic differential equations in

traditional geometry processing.

2.3 Convex Optimization for Regularized Geodesics
Perhaps the closest related work to our paper is [Edelstein et al.

2023], which proposes a convex optimization technique for extract-

ing regularized geodesic distances on triangle meshes. Their paper

generalizes the PDE-based results in [Belyaev and Fayolle 2020,

2015] from estimation of distance-like functions to general regular-

izers under some mild conditions. This optimization approach is

based on the equivalence found between the solution of an eikonal

type equation, i.e., a stationary first-order PDE dependent only on

the gradient of a variable function, and the solution to a volumemax-

imization problem. The equivalence is a consequence of mathemati-

cal results on the study of maximal viscosity subsolutions of eikonal

type equations first introduced by [Ishii 1987]. In our case, we handle

the problem of more general evolutionary Hamilton-Jacobi equa-

tions with Hamiltonians depending on the variable function rather

than just its gradient.

3 MATHEMATICAL PRELIMINARIES

3.1 General Preliminaries
Let M ⊂ R3

be a compact surface embedded in R3
, possibly with

boundary 𝜕M; we will use �̂�(𝑥) to denote the unit normal to the

boundary 𝜕M at 𝑥 ∈ 𝜕M. Take ∇ to be the gradient operator

and Δ to be the Laplacian operator, with the convention that Δ is

negative semidefinite. We refer the reader to [Jost 2011] for a general

introduction to Laplacian operators, which roughly map functions

to their total second derivative pointwise.

Let 𝑞 denote ∇𝑢 (𝑥). In this paper we consider evolutionary, that
is, time-varying, second-order parabolic PDE of the following form:

𝜕𝑢

𝜕𝑡
+ 𝐻 (𝑥, 𝑞,𝑢) = 𝜀Δ𝑢, (1)

where 𝜀 ≥ 0 and 𝑢 (𝑥, 𝑡) : M × [0,∞) → R is an unknown variable

function. If 𝜀 > 0, then 𝑢 is guaranteed to be twice differentiable on

M. The function 𝐻 (𝑥, 𝑞,𝑢) : 𝑇 ∗M × R→ R is the Hamiltonian on

𝑇 ∗M of

𝜕𝑢

𝜕𝑡
+ 𝐻 (𝑥, 𝑞,𝑢) = 0, (2)

which is known as the Hamilton-Jacobi equation [Evans 2010]. The

parameter 𝜀 in (1) is called the viscosity parameter and, as 𝜀 → 0, the

function 𝑢 converges to a solution of (2) [Fleming and Souganidis

1989].

We tackle the Cauchy problem for (1), that is, with a prescribed

initial condition 𝑢 (𝑥, 0) = 𝑢0 (𝑥), where 𝑢0 : M → R is some scalar

function, and boundary conditions determining the behavior of

𝑢 (𝑥, 𝑡) at 𝑥 ∈ 𝜕M. Two common choices for boundary conditions

are Dirichlet conditions, which prescribe the values of 𝑢 (𝑥, 𝑡) for
all (𝑥, 𝑡) ∈ 𝜕M × (0,∞), and Neumann conditions, which specify

∇𝑢 (𝑥, 𝑡) · �̂�(𝑥) ≡ 0 for all 𝑥 ∈ 𝜕M.

3.2 Example PDE
Our framework arose in our study of functions 𝑢 (𝑥, 𝑡) satisfying the
following PDE:

𝜕𝑢

𝜕𝑡
− ∥∇𝑢∥2

2
= Δ𝑢. (3)

This PDE will be referred to in this paper as the “nonlinear diffu-

sion" equation (see §3.2.1). Its name originates from the nonlinear

nature of the PDE and its relationship with heat diffusion shown in

the proposition below.

Proposition 3.1. Suppose 𝑣 (𝑥, 𝑡) is such that 𝑣 (𝑥, 𝑡) > 0 for all
(𝑥, 𝑡) ∈ M × [0,∞) and 𝑣 satisfies the heat equation:

𝜕𝑣

𝜕𝑡
= Δ𝑣 . (4)

Define 𝑢 (𝑥, 𝑡) := log 𝑣 (𝑥, 𝑡). Then, 𝑢 (𝑥, 𝑡) satisfies (3). Moreover, if 𝑣
satisfies Dirichlet or Neumann boundary conditions, then 𝑢 satisfies
the same boundary conditions up to applying log. In sum, 𝑢 satisfies
the boundary conditions satisfied by 𝑣 up to applying log.



4 • Mattos Da Silva et al.

Proof. Let 𝑢 = log 𝑣 , then this is a straightforward application

of the chain rule:

𝜕𝑢
𝜕𝑡 − ∥∇𝑢∥2

2
= Δ𝑢

=⇒ 1

𝑣
𝜕𝑣
𝜕𝑡 − 1

𝑣2
∥∇𝑣 ∥2

2
= ∇ ·

(
1

𝑣∇𝑣
)

= − 1

𝑣2
(∇𝑣 · ∇𝑣) + 1

𝑣Δ𝑣

=⇒ 𝜕𝑣
𝜕𝑡 = Δ𝑣

□

Remark. Proposition 3.1 only applies to strictly positive functions
𝑣 (𝑥, 𝑡); by the maximum principle, it is sufficient to check 𝑣 (𝑥, 0) > 0

to guarantee this condition for all 𝑡 ∈ [0,∞). Also, 𝑢 is a supersolution
to the heat equation since clearly 𝜕𝑢/𝜕𝑡 ≥ Δ𝑢.

The overarching theme of this paper is that the same numerical

procedure that we developed to solve (3) can be generalized to han-

dle other parabolic problems of the form (1) given certain continuity

and convexity assumptions on 𝐻 and 𝑢. In particular, we assume

the following:

(A1) Continuity. The function 𝐻 (𝑥, 𝑞,𝑢) is continuous on𝑇 ∗M×R.
(A2) Monotone convexity. ∃𝑐 ∈ R such that, whenever 𝑤 ≤ 𝑢, we

have 𝐻 (𝑥, 𝑞,𝑢) − 𝐻 (𝑥, 𝑞,𝑤) ≥ 𝑐 (𝑢 −𝑤).
(A3) Lipschitz. Locally on M, we have ∥𝐻 (𝑥, 𝑞,𝑢) − 𝐻 (𝑦, 𝑞,𝑢)∥2 ≤

𝐿(1 + ∥𝑞∥2)∥𝑥 − 𝑦∥2 , where 𝐿 is a Lipschitz constant.

In this paper, we consider three choices of the function 𝐻 =

𝐻 (𝑥, 𝑞,𝑢):

3.2.1 Nonlinear diffusion. First, motivated by equation (3), we con-

sider 𝐻 (𝑥, 𝑞,𝑢) = −∥𝑞∥2

2
. In §7.1–7.2, we will show that the nonlin-

ear diffusion equation together with Proposition 3.1 play a key role

in overcoming the limitations faced by methods relying on small

amounts of diffusion to compute entropy regularized transport dis-

tances on discrete domains.

Here, we verify assumptions (A1)–(A3) are fufilled: (A1) follows

from the continuity of the 𝐿2 norm; (A2) and (A3) are empty condi-

tions in this case since 𝐻 does not depend on 𝑥 or 𝑢. These assump-

tions can be verified straightforwardly for remaining example PDE

by the interested reader.

3.2.2 G-equation. Second, let Φ : M → R3
be a vector field, we

consider 𝐻 (𝑥, 𝑞,𝑢) = Φ(𝑥) · 𝑞 − ∥𝑞∥2, which corresponds to the

𝐺-equation (see §2.2.2):

𝜕𝑢

𝜕𝑡
+ Φ(𝑥) · ∇𝑢 − ∥∇𝑢∥2 = 𝜀Δ𝑢. (5)

For 𝜀 > 0, equation (5) is known as the viscous 𝐺-equation, and
when 𝜀 = 0, it is known as the inviscid 𝐺-equation.

3.2.3 Fokker-Planck equation. Finally, we consider𝐻 (𝑥, 𝑞,𝑢) = 𝑢∇·
Φ(𝑥) + 𝑞 · Φ(𝑥), which corresponds to the Fokker-Planck equation

(see §2.2.3):

𝜕𝑢

𝜕𝑡
+ 𝑢∇ · Φ(𝑥) + ∇𝑢 · Φ(𝑥) = 𝜀Δ𝑢. (6)

Here 𝑢 is the density function of the trajectories of the following

SDE:

d𝑥 = ∇ · Φ(𝑥)d𝑡 +
√

2𝜀 d𝑊 (𝑡), (7)

constant dri� shear �ow cellular �ow

Fig. 4. Three typical examples of vector fields Φ used when evolving second-
order parabolic PDE that involve terms with vector fields.

t=0 t=1

Fig. 5. Time evolution of the Fokker-Planck equation (6) on a 100 × 100

triangle grid, obtained using our method, under constant drift (top), shear
flow (middle), and no drift (bottom). See Figure 4 for an illustration of
constant drift and shear flow.

where𝑊 (𝑡) is a Wiener process. We refer the reader to [Medved

et al. 2020] for a review on the relationship between equations (6)–

(7). The vector field Φ is typically known as the drift vector and 𝜀

as the diffusion coefficient, but we will call the latter the viscosity

parameter for consistency throughout this paper.

3.3 Viscosity Solutions
We introduce a few definitions from [Crandall and Lions 1983] in the

study of weak solutions to Hamilton-Jacobi equations. These defini-

tions will be necessary in the proofs presented in section §4.1.4. We

refer the reader to [Crandall et al. 1992] for a complete introduction

to the theory of viscosity solutions and their applications to PDE.

Definition 3.2 (Viscosity subsolutions, and resp., supersolutions).
Let𝑉 be an open subset in the manifoldM. A function 𝑢 : 𝑉 → R is

a viscosity subsolution (resp., supersolution) of
𝜕𝑢
𝜕𝑡 +𝐻 (𝑥, 𝑞,𝑢) = 0

if for every 𝐶1
function 𝜑 : 𝑉 → R and every point 𝑥 ∈ 𝑉 such

that 𝑢 − 𝜑 has a local maximum (resp., minimum) at 𝑥 , we have

𝜕𝜑
𝜕𝑡 + 𝐻 (𝑥,∇𝜑, 𝜑) ≤ 0 (resp.,

𝜕𝜑
𝜕𝑡 + 𝐻 (𝑥,∇𝜑, 𝜑) ≥ 0).

Definition 3.3 (Viscosity solution). A function 𝑢 : 𝑉 → R is a

viscosity solution of
𝜕𝑢
𝜕𝑡 + 𝐻 (𝑥, 𝑞,𝑢) = 0 if it is both a subsolution

and a supersolution.
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φ

(x,u(x))
u

Fig. 6. A two dimensional illustration of a viscosity supersolution 𝜑 .

We note that the above definitions do not assume the function

𝑢 to be continuous. In fact, the necessity for such definitions arose

in the study of problems without continuous solutions. As stated

in §3.1, the functions we study are twice differentiable if 𝜀 > 0 and

hence the following theorem is useful:

Theorem 3.4 (Continuously differentiable viscosity solu-

tion). A 𝐶1 function 𝑢 : 𝑉 → R is a viscosity solution if and only if
it is a classical solution.

Hence, while we might still use the term viscosity solution throu-

ghout the paper, when referring to the problem in (2) with 𝜀 > 0, a

viscosity solution is equivalent to a solution in the classical sense.

4 METHOD
Let Ω = (𝑉 , 𝐸, 𝐹 ) be a triangle mesh with vertices 𝑉 ⊂ R3

, edges

𝐸 ⊆ 𝑉 ×𝑉 , and triangular faces 𝐹 ⊂ 𝑉 ×𝑉 ×𝑉 . In this section, we

develop a general approach to approximating solutions to equations

of the form (1) on triangle meshes, given𝑢 (𝑥, 0) discretized on (𝑉 , 𝐹 )
using one value per vertex, 𝑢0 ∈ R |𝑉 |

.

In geometry processing, the most common discretization of the

PDE on triangle meshes uses the finite element method (FEM). Fol-

lowing [Botsch et al. 2010], take 𝐿 ∈ R |𝑉 |× |𝑉 |
to be the cotangent

Laplacian matrix associated to our mesh (with appropriate bound-

ary conditions), and take 𝑀 ∈ R |𝑉 |× |𝑉 |
to be the diagonal matrix

of Voronoi cell areas. Also, take 𝐺 ∈ R3 |𝐹 |× |𝑉 |
to be the matrix

mapping vertex scalar values to per face gradients. In our time

discretization strategy, we will denote the time step size by ℎ.

In what follows, we first describe our method for time integration,

and then we define a spatio-dicretization strategy suitable to the

different terms associated with PDE of the form in (1).

4.1 Time Integration
Two typical means of solving PDE in time are explicit time inte-

gration, such as the forward Euler method, and implicit integration,

such as the backward Euler method.

4.1.1 Forward Euler. Forward Euler often imposes a strict restric-

tion (upper bound) on ℎ for stability. Runge–Kutta and other varia-

tions of this integrator can improve stability and accuracy of forward

Euler integration, but almost all have two critical drawbacks:

• Time step restrictions require that we take many small steps

(ℎ ≪ 1) to avoid introducing instability.

• If initial conditions are nonzero only on one vertex 𝑣 ∈ 𝑉 , as

might be the case for algorithms based on taking the logarithm

of the heat kernel (see §7.1–7.2), it takes 𝑘 ∼ 𝑂 ( |𝑉 |) steps of
this integrator—regardless of ℎ—before the solution is nonzero

everywhere (which is needed to apply the logarithm).

4.1.2 Backward Euler. Backward Euler is unconditionally stable

and diffuses information everywhere along the domain in a single

step, addressing the two issues of forward Euler. It is first-order

accurate in ℎ, which often suffices for small ℎ > 0. If the PDE

contains a nonlinear term, however, backward Euler and related

implicit integration schemes are no longer equivalent to solving a

single linear system of equations; in this case, implicit integration

leads to a nonlinear root-finding problem that requires a nearby

guess.

We now outline a method to address the challenges faced by

classical approaches in the context of solving second-order parabolic

PDE.

4.1.3 Strang splitting. We would like to leverage the effectiveness

of implicit integration for the simplest version of (1) where 𝐻 = 0,

but without having to solve a nonlinear system of equations. To

this end, we propose using Strang–Marchuk splitting (also known

I

II III
tn+1

tn+1/2

tn un

un

un+1

un

un
(2)

(1)

(1)

un
(2)

as leapfrog or Störmer–Verlet in-

tegration), originally proposed

in [Marchuk 1988; Strang 1968].

Generically, operator splitting

methods solve differential equa-

tions 𝑑𝑥/𝑑𝑡 = 𝑓 (𝑥)+𝑔(𝑥) by alter-
nating steps inwhich the terms 𝑓

and 𝑔 on the right-hand side are

treated individually. This split-

ting scheme is justified by the

Lie–Trotter–Kato formula [Kato 1974; Trotter 1959]. In our case,

we choose a splitting so that one piece of the splitting resembles

solving the heat equation and the other benefits from the solution

techniques along the lines of those introduced by Belyaev and Fay-

olle [2020] (later extended by Edelstein et al. [2023]).

In particular, suppose 𝑢𝑛−1 ∈ R |𝑉 |
is our estimate of 𝑢 at time

ℎ(𝑛 − 1). We estimate 𝑢𝑛 via the following three steps:

I. First, apply half a time step of implicit heat diffusion, approxi-

mating the solution to 𝜕𝑢/𝜕𝑡 = 𝜀Δ𝑢 at 𝑡 = ℎ(𝑛 − 1) + ℎ/2:

𝑢
(1)
𝑛 = (𝑀 − (ℎ/2) 𝜀𝐿)−1 𝑀𝑢𝑛−1 . (8)

II. Next, apply a full time step approximating the solution to

𝜕𝑢/𝜕𝑡 + 𝐻 (𝑥, 𝑞,𝑢) = 0, as detailed in §4.1.4, to obtain 𝑢
(2)
𝑛 .

III. Finally, apply a second half-step of implicit heat diffusion:

𝑢𝑛 = (𝑀 − (ℎ/2) 𝜀𝐿)−1 𝑀𝑢
(2)
𝑛 . (9)

Note that (8) and (9) solve the same linear system with different

right-hand sides, allowing us to pre-factor the matrix𝑀 − (ℎ/2) 𝜀𝐿
if we plan to apply our operator more than once. It is also worth

noting that possible time step size limitations in Strang splitting are

only imposed by the method chosen to solve each subproblem. The

backward Euler substep is unconditionally stable and the convex

optimization substep, which is outlined next, enjoys similar stability

to implicit methods. Analytically, Strang splitting has convergence

of second order [Strang 1968].

There are different splitting schemes that one could choose when

treating different kinds of PDE. We considered accuracy in choosing

an suitable splitting scheme for our case. The Lie-Trotter scheme,
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for instance, is first-order and can provide crude results for non-

linear problems [Strang 1968]. Strang splitting is second-order, i.e.,

O(ℎ2) given a time step ℎ. The nonlinearity in various second-order

parabolic PDE makes Strang a preferable choice.

4.1.4 Strang-Marchuk splitting, step II. We use convex optimization

to take a time step of the first-order equation 𝜕𝑢/𝜕𝑡 + 𝐻 (𝑥, 𝑞,𝑢) = 0,

including the case where this is a nonlinear first-order problem. In

this section, we describe an implicit integrator leveraging the fact

that −𝐻 (𝑥, 𝑞,𝑢) is jointly convex in its arguments (𝑞,𝑢).
In this step, our goal is to obtain𝑢

(2)
𝑛 by integrating the first-order

equation for time ℎ starting at function 𝑢
(1)
𝑛 . The simplest implicit

integration strategy is backward Euler integration, which would

solve the following root-finding problem:

𝑢
(2)
𝑛 − 𝑢

(1)
𝑛

ℎ
+ 𝐻 (𝑥,∇𝑢 (2)

𝑛 , 𝑢
(2)
𝑛 ) = 0. (10)

Here, we will assume the 𝑢
(𝑖 )
𝑛 are functions on the surface M, but

an identical formulation will apply after spatial discretization in

§4.2. This problem is nonlinear whenever 𝐻 is nonlinear, making it

difficult to solve.

Instead, we observe that relaxing the equality in (10) to an in-

equality leads to a convex constraint on the unknown function 𝑢
(2)
𝑛 .

Taking inspiration from Edelstein et al. [2023], we arrive at the

following optimization problem to advance forward in time:

𝑢
(2)
𝑛 =


arg min𝑢

∫
M 𝑢 (𝑥) dVol(𝑥)

subject to
1

ℎ
(𝑢 − 𝑢

(1)
𝑛 ) + 𝐻 (𝑥,∇𝑢,𝑢) ≥ 0

for all 𝑥 ∈ M .

(11)

Notice that the constraint in (11) yields a supersolution of the implicit

problem (10). Moreover, formulation (11) is a convex problem for 𝑢

since it has a linear objective and a pointwise convex constraint.

The intuitive argument for the equivalence between solutions

to eikonal type equations and solutions to a convex optimization

problem given in [Belyaev and Fayolle 2020], and later used by

[Edelstein et al. 2023] is not sufficient to obtain the well-posedness

of (11) and its equivalence to (10). These works are similar to ours

in that they establish an equivalence between a first-order parabolic

PDE and a constrained optimization problem by leveraging results

from the theory of viscosity solutions. A key distinction, however,

lies in the fact that PDE of the form (10) are evolutionary and could

also have dependence on the value of the unknown function 𝑢

rather than just its gradient ∇𝑢. In what directly follows, however,

we justify using (11) to solve (10).

Theorem 4.1 (Comparison principle). Assume 𝐻 satisfies as-
sumptions (A1)–(A3). Let 𝑤 be a viscosity subsolution and 𝑢 be a
viscosity supersolution of 𝜕𝑢/𝜕𝑡 +𝐻 (𝑥, 𝑞,𝑢) = 0. Assume that𝑤,𝑢 are
locally bounded and𝑤 (𝑥, 0) ≤ 𝑢 (𝑥, 0) for all 𝑥 . Then𝑤 (𝑥, 𝑡) ≤ 𝑢 (𝑥, 𝑡)
for all (𝑥, 𝑡).

Theorem 4.2. Assume 𝐻 fulfills (A1)–(A3). Then (10) has a unique
solution in the viscosity sense.

The existence and uniqueness results for Cauchy problems of the

form 𝜕𝑢/𝜕𝑡+𝐻 (𝑥, 𝑞,𝑢) = 0 on an open subset ofR𝑁 , under essentially

the same assumptions (A1)–(A3), is given in [Barles 2013] (see §5

Theorem 5.2). The comparison principle proof for the same Cauchy

problem is also given by Barles [2013] (see §7 Theorem 7.1). Readers

can also refer to Appendix A and B for a sketch of these proofs.

While the domain in [Barles 2013] is an open subset of R𝑁 , the

authors in [Peng and Zhou 2008] justify the extension of Theorems

4.1–4.2 to manifolds with or without a boundary.

Corollary 4.3. Under the same assumptions on 𝐻 , the minimal
viscosity supersolution to (10) is the equation’s unique solution in the
viscosity sense.

With these results in hand, we can discuss the equivalence be-

tween the solution of that problem and the unique solution of (10).

Theorem 4.4. Again, assume 𝐻 fullfils (A1)–(A3). The unique
viscosity solution to (10) is the solution to the minimization problem
in (11).

Proof. The only variable functions that can satisfy the inequal-

ity constraint in (11) are by definition viscosity supersolutions of

(10). The minimal viscosity supersolution is the variable function

that minimizes the integral volume

∫
M 𝑢 (𝑥)dVol(𝑥). The unique-

ness given by Theorem 4.2 and the comparison principle together

guarantee that the minimal viscosity supersolution is the viscosity

solution to (10). Hence, the minimal supersolution not only satisfies

the inequality constraint but actually achieves equality, meaning

the constraint in our convex relaxation becomes tight. □

So far, in this subsection, we have shown the existence and unique-

ness of a solution to (10), as well as a comparison principle for vis-

cosity solutions of this equation. We used these results to obtain

the equivalence of the solution of (10) to the solution of the convex

optimization problem outlined in (11). Recall that this equivalence

to a convex optimization problem is the key insight we use to solve

one of the steps in our Strang splitting scheme; our main goal is to

solve PDE of the form (1).

In the spatially-discrete case (see §4.2), well-posedness of our

convex program is immediate since it has a linear objective and

satisfiable convex constraints. Empirically, we find that our dis-

cretization of this time step closely resembles ground-truth when it

is available.

4.2 Spatial Discretization
We can approximate solutions to equation (1) by solving the ordinary

differential equation:

𝑑𝑢

𝑑𝑡
+ 𝐻 (𝑥,𝐺𝑢,𝑢) = 𝜀𝑀−1𝐿𝑢. (12)

We will apply the Strang splitting strategy from §4.1.3 to this ODE,

yielding steps nearly identical to those outlined in the previous

section.

Splitting time integrationwith a step of implicit diffusion has been

used in other corners of computer graphics—we refer the reader to

Elcott et al. [2007] for an example of such an algorithm. Their imple-

mentation uses a spatial discretization via Discrete Exterior Calculus

(DEC). A number of the PDE that we consider in our framework,

e.g., the G-equation, do not fall into the category for which DEC

is a pertinent choice of spatial discretization. We define a different

choice of discretization that is suitable to the PDE that we solve. The
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t=0 t=0.12 t=0.24 t=0.36 t=0.48 t=0.6

t=0 t=0.06 t=0.12 t=0.18 t=0.24 t=0.3

Fig. 7. Results of our framework’s implementation on the discrete tori with 200,000 triangle faces and 100,000 vertices. Top row: time evolution of the
Fokker-Planck equation (6) under a certain flow. Bottom row: time evolution of the𝐺-equation (5) under Kolmogorov flow.

success of the aforementioned algorithms, however, suggests the

viability of splitting time integration in geometry processing and

computer graphics. Moreover, in cases where spatial discretization

via DEC is available to a PDE in the class we consider, our splitting

and convex relaxation strategy is likely relevant to time integration

of the resulting ODE.

If we use a naïve piecewise-linear finite element method (FEM)

to discretize (1) spatially, the 𝜕𝑢/𝜕𝑡 and Δ𝑢 terms are associated to

the vertices of our mesh, while 𝐻 (𝑥,𝐺𝑢,𝑢) includes terms that are

associated to both the vertices (𝑥,𝑢) and the triangular faces (𝐺𝑢).

Hence, we propose an alternate spatio-discretization strategy to map

any face valued quantities in 𝐻 to per-vertex values. In particular,

on a mesh, we reformulate (12) via

𝑑𝑢𝑖

𝑑𝑡
+ 𝜔𝑖

∑︁
𝑗∼𝑖

𝑎 𝑗𝐻𝑖 𝑗 ((𝐺𝑢) 𝑗 (𝑡), 𝑢𝑖 (𝑡)) = 𝜀 (𝑀−1𝐿𝑢 (𝑡))𝑖 . (13)

where 𝜔𝑖 = 1/∑𝑗∼𝑖 𝑎 𝑗 and 𝑎𝑖 is the area of the triangle 𝑗 in the one-

ring neighborhood of vertex 𝑖 . The right-hand side of equation (13)

is convex whenever 𝐻𝑖 𝑗 is jointly convex in its inputs. Hence, our

discretizations below of (2), (5), and (6) are convex since 𝐻𝑖 𝑗 is

convex by design whenever 𝐻 is convex in the continuous case.

Next, we define 𝐻 discretized as a per-vertex quantity for each of

the three example PDE given in sections §3.2.1–3.2.3.

4.2.1 Nonlinear diffusion. We can now discretize 𝐻 = −∥𝑞∥2

2
on

the right-hand side of (3) as follows

𝐻𝑖 = −𝜔𝑖

∑︁
𝑗∼𝑖

3∑︁
𝑘=1

(𝐺𝑘𝑢 ⊙ 𝐺𝑘𝑢) 𝑗 (14)

where ⊙ denotes element-wise multiplication, 𝐺𝑘 ∈ R |𝐹 |× |𝑉 |
is the

matrix mapping a function on the vertices 𝑉 of our mesh to the

𝑘th components of its per-triangle gradient, and𝑊 is the diagonal

matrix whose elements are the weights 𝜔𝑖 .

4.2.2 G-equation. Similarly, we can discretize the 𝐻 function for

(5) as follows

𝐻𝑖 = 𝜔𝑖

∑︁
𝑗∼𝑖

( ∑
3

𝑘=1
(Φ𝑘 ⊙𝐺𝑘𝑢) 𝑗 −

√︃∑
3

𝑘=1
(𝐺𝑘𝑢) 𝑗 ⊙ (𝐺𝑘𝑢) 𝑗

)
, (15)

whereΦ𝑘 ∈ R |𝐹 | is the 𝑘th component of a vector fieldΦ(𝑥) ∈ R3 |𝐹 |
.

4.2.3 Fokker-Planck equation. Finally, discretize the divergence

operator ∇· by𝐺T𝑀𝐹 ∈ R |𝑉 |×3 |𝐹 |
, where𝑀𝐹 is the diagonal matrix

of triangle areas. The per-vertex discretization of the 𝐻 functional

on the right-hand side of equation (6) becomes:

𝐻𝑖 = (𝑢 ⊙ (𝐺T𝑀𝐹Φ))𝑖 + 𝜔𝑖

∑︁
𝑗∼𝑖

3∑︁
𝑘=1

(𝐺𝑘𝑢 ⊙ Φ𝑘 ) 𝑗 . (16)

5 IMPLEMENTATION DETAILS
After introducing the spatial discretization techniques from §4.2,

our nonlinear time step (11) becomes a finite-dimensional convex

optimization problem:

minimize
𝑢
(2)
𝑛

∑
𝑖

(
𝑢
(2)
𝑛

)
𝑖

subject to 𝑢
(2)
𝑛 − 𝑢

(1)
𝑛 + ℎ𝐻 (𝑥,𝐺𝑢 (2)

𝑛 , 𝑢
(2)
𝑛 ) ≥ 0,

(17)

where 𝐻 denotes the discretization of the smooth function fufilling

assumptions (A1)–(A3) for each of our example PDE (see §4.2.1-

§4.2.3).

Our implementation uses the CVX software library [Grant and

Boyd 2008, 2014] equipped with the default conic solver SDPT3

[Toh et al. 1999; Tütüncü et al. 2003]. CVX is a free software that

turnsMatlab into a modeling language. Readers familiar withMat-

lab can use CVX to implement our framework with little effort

since it allows them to write constraints and objectives using Mat-

lab’s standard syntax. In principle, however, any convex solver (e.g.,

Mosek, Gurobi, ADMM) can be used.

To be concrete, we formulate the convex optimization problem

for each of the example parabolic PDE of the form in (1) as follows:

Nonlinear diffusion. In this case, we have quadratic constraints:

arg min𝑢 (2)
∑
𝑖

(
𝑢
(2)
𝑛

)
𝑖

subject to 𝑢
(2)
𝑛 − 𝑢

(1)
𝑛 − ℎ 𝜔𝑖

∑
𝑗∼𝑖

∑
3

𝑘=1
(𝐺𝑘𝑢

(2)
𝑛 ⊙ 𝐺𝑘𝑢

(2)
𝑛 ) 𝑗 ≥ 0,

𝑖 = 1, . . . , |𝑉 |.
(18)
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Table 1. Determination of order for convergence in Figs. 9,10 and 11

Fig. 9 Fig. 9 Fig. 9 Fig. 10 Fig. 11

𝑚 = −4 𝑚 = −3 𝑚 = −2

ℎ R R R ℎ R ℎ R

6.00 × 10
−1

0.830 0.852 0.968 5.00 × 10
−2

0.650 1.50 × 10
−3

0.722

3.00 × 10
−1

0.921 0.935 0.989 2.50 × 10
−2

0.775 7.50 × 10
−4

0.801

1.50 × 10
−1

0.978 0.986 1.010 1.25 × 10
−2

0.872 3.75 × 10
−4

0.870

7.50 × 10
−2

1.025 1.029 1.040 6.25 × 10
−3

0.936 1.88 × 10
−4

0.938

3.75 × 10
−2

1.088 1.091 1.096 3.13 × 10
−3

1.018 9.38 × 10
−5

1.024

1.88 × 10
−2

1.217 1.218 1.220 1.56 × 10
−3

1.171 4.69 × 10
−5

1.171

9.38 × 10
−3

1.582 1.583 1.584 7.81 × 10
−4

1.564 2.34 × 10
−5

1.552

maximum edge length

100

Convergence
L2 relative error to reference solution

10-1

10-2

10-3

10-4
10-1 10-2

O(h)

O(h2)

Nonlinear di�usion

…

Fig. 8. Convergence plot obtained for a single fixed time step ℎ = 10
−5 as

the triangle mesh is refined, i.e., maximum edge length decreases (𝑥-axis).
The error (𝑦-axis) is measured in the 𝐿2 norm against the solution on the
mesh of highest resolution.

Table 2. Determination of order for convergence in Fig. 8

ℓ𝑚𝑎𝑥 R

2.56 × 10
−1

1.864

1.22 × 10
−1

1.932

6.26 × 10
−2

2.036

3.37 × 10
−2

2.308

While the program above is convex, the constraints involve gen-

eral convex quadratic forms. It can be more efficient to convert such

programs to second-order cone program (SOCP) standard form, an

optimized form for standard solvers like SDPT3. Hence, we refor-

mulate the above quadratic constraint as a second-order cone. In

particular, algebraic manipulation shows that (18) is equivalent to

the following constraints (1−𝑧 𝑗 )/2

(𝐺𝑢 (2)
𝑛 ) 𝑗


2

≤
(1 + 𝑧 𝑗 )

2

, 𝑗 = 1, . . . , |𝐹 | (19)

(
𝑢
(2)
𝑛

)
𝑖 −

(
𝑢
(1)
𝑛

)
𝑖 − ℎ 𝜔𝑖

∑
𝑗∼𝑖 𝑧 𝑗 ≥ 0, 𝑖 = 1, . . . , |𝑉 |. (20)

G-equation. In this case, we simply have constraints using norms,

which is already in SOCP form. Hence, we can use the conic solver

efficiently without further reformulation. We implement our opti-

mization as follows

arg min𝑢 (2)
∑
𝑖

(
𝑢
(2)
𝑛

)
𝑖

subject to ℎ 𝜔𝑖
∑

𝑗∼𝑖
( ∑

3

𝑘=1
(Φ𝑘 ⊙ 𝐺𝑘𝑢

(2)
𝑛 ) 𝑗 − ∥(𝐺𝑢 (2)

𝑛 ) 𝑗 ∥2

)
+ 𝑢

(2)
𝑛 − 𝑢

(1)
𝑛 ≥ 0, 𝑖 = 1, . . . , |𝑉 |.

(21)

Fokker-Planck equation. This equation is linear and requires no

reformulation. Its implementation becomes:

arg min𝑢 (2)
∑
𝑖

(
𝑢
(2)
𝑛

)
𝑖

subject to ℎ
(
(𝑢 (2)

𝑛 ⊙ (𝐺T𝑀𝐹Φ))𝑖 + 𝜔𝑖
∑

𝑗∼𝑖
∑

3

𝑘=1
(Φ𝑘 ⊙ 𝐺𝑘𝑢

(2)
𝑛 ) 𝑗

)
+ 𝑢

(2)
𝑛 − 𝑢

(1)
𝑛 ≥ 0, 𝑖 = 1, . . . , |𝑉 |.

(22)

6 NUMERICAL EXPERIMENTS
We demonstrate the versatility of our method for a variety of PDE

on surfaces and validate its performance in this section. Our exper-

iments were carried out in Matlab 2023a, on a macOS machine

with 32GB memory. All tests were run with solver tolerance 𝛿
1/2

,

where 𝛿 = 2.22
−16

is the machine precision. Code with examples is

included with this paper.

6.1 PDEs on Surfaces
Our main numerical contribution is a solver capable of handling

a range of linear and nonlinear parabolic PDE. As will be shown
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t=0 t=0.6 t=1.2 t=1.8 t=2.4

Varying viscosity

100

Convergence
L2 relative error to reference solution

10-1

10-2

10-3

100 10-1 10-2

time step size

O(h)

O(h2)

m=-4
m=-3
m=-2

Fig. 9. The effect of varying the viscosity parameter in the Fokker-Planck equation on a sphere with 81,920 triangle faces and 40,962 vertices. The equation is
shown evolving in time on the discrete sphere with viscosity 𝜀 = 10

−4 (top row), 𝜀 = 10
−3 (middle row), and 𝜀 = 10

−2 (bottom row).

10-2

10-3

10 -1

10 -4

10 -2 10 -3

10 -5

10 -6

10 -7
10 -1

time step size

O(h)

O(h2)

G-equation

100

t=0 t=0.005 t=0.02 t=0.035 t=0.05

Convergence
L2 relative error to reference solution

Fig. 10. Convergence plot obtained for the time evolution of the𝐺-equation
(top row) as the time step size is decreased (𝑥-axis). The error (𝑦-axis) is
computed using the 𝐿2 norm against the solution obtained with smallest
step size.

t=0 t=0.0005 t=0.001 t=0.0015

O(h)

O(h2)
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Fig. 11. Convergence plot obtained for the time evolution of the nonlinear
diffusion equation on a mesh with both varying triangulation quality and
sharp features (top row) as the time step size is decreased (𝑥-axis). The time
evolution illustrations (top row) are show in exponential domain.
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later, this solver can be coupled with existing methods found in

practical applications in computer graphics (see §7). For now, we

focus on demonstrating the direct use of the solver to evolve PDE

with various choices of parameters and meshes. Specifically, given

a velocity vector field Φ ∈ R |𝐹 |×3
defined per face on an under-

lying computational mesh, we can use our framework to obtain

the numerical time evolution of the 𝐺-equation equation and the

Fokker-Planck equation as seen on the tori in Figure 7. We also refer

the reader to Figures 9, 10, and 11 for illustrations of time evolution

of each of our example PDE. The order of convergence for these

experiments is discussed in the next subsection.

6.2 Convergence
It is natural to askwhether the second-order parabolic PDE problems

that we consider on curved surfaces admit closed-form solutions. To

the best of our knowledge, such solutions are in general unavailable

outside of a few simple cases. Consider, e.g., the problem of solving

the Fokker-Planck equation on the unit sphere. When the vector

field Φ is zero, then the Fokker-Planck equation reduces to the heat

equation, which is easy to solve using spherical harmonic expansion.

However, when Φ is nonzero, the Hamiltonian depends on ∇𝑢, and
it is typically quite difficult to express the first-order derivatives of

a function in terms of a spherical harmonic expansion. We refer the

reader to §3 of Barrera et al. [1985], where the process of writing

down such an expansion is described as “frustrating.”

To get close to measuring convergence to an analytical solution,

we perform a self-convergence experiment. We use the solution for

highest mesh resolution as the (nearly-)exact solution, denoted by

𝑢∗, and compare it to a sequence of solutions 𝑢𝑁 found for lower

resolutionmeshes.We estimate the convergence order of themethod

by

𝑅 = log
2

(
𝑢∗ − 𝑢𝑁

𝑢∗ − 𝑢𝑁/2

)
, (23)

where 𝑁 is either a space or time discretization size, i.e., maximum

edge length size ℓ (for spatial convergence) or time step size ℎ (for

time convergence).

In Figure 8, we present an experiment indicating convergence un-

der spatial refinement. While our choice of discretization is standard

first-order FEM, we find that the order of convergence of our method

under spatial refinement is second-order (see Table 2). In Figure

10, we show an experiment to determine convergence under time

refinement for the evolutionary 𝐺-equation, and in Figure 9, we do

the same for the Fokker-Planck equation using various amounts of

viscosity. The results are summarized in Table 1. For both equations

convergence is of at least first-order, and first-order convergence

is consistent for various amounts of viscosity as demonstrated in

the evolution of the Fokker-Planck. While Strang-Marchuk splitting

encourages second-order convergence, we find empirically that the

first-order nature of each step’s method only guarantees first-order

convergence for the scheme.

6.3 Robustness
The performance of our method in meshes with varying triangu-

lation and with sharp features is illustrated in Figure 11. In this

case, our method requires smaller step sizes to achieve first-order

convergence.

7 APPLICATIONS

7.1 Wasserstein Barycenter
The “log-sum-exp” trick is a standard method used to stabilize nu-

merical algorithms, including the Sinkhorn algorithm when using

small amounts of entropy. This computation, however, is not pos-

sible using the method adapted to triangle meshes proposed in

[Solomon et al. 2015], which corresponds to taking the logarithm of

a function undergoing tiny amounts of heat diffusion. We advocate

for using our numerical framework and Proposition 3.1 to solve (3)

to compute the result of heat diffusion on triangle meshes directly in

the logarithmic domain, rather than diffusing in the linear domain

and then taking the logarithm.

In Figure 12, we demonstrate how our log-domain diffusion algo-

rithm outperforms the state-of-the-art in computing Wasserstein

barycenters on mesh surfaces. The method in [Solomon et al. 2015]

fails to output a result for the entropy coefficient 𝛾 = 10
−3

with very

sharp probability distributions as input. Even excluding this failure

case, the Wasserstein barycenters obtained via the convolutional

method look qualitatively wrong for a number of entropy coeffi-

cients in Figure 13, while our method remains numerically stable

and obtains the expected visual results given the distributions.

7.2 Measure Interpolation
Given a pair of initial and target distributions 𝜇0 and 𝜇1 on a tri-

angular mesh, the same algorithm used to compute Wasserstein

barycenters can be applied with weights (1 − 𝑡, 𝑡) to compute a

time-varying sequence of distributions 𝜇𝑡 transitioning from initial

to target, moving along geodesic paths. In Figure 14, we show a com-

parison to the convolutional method in [Solomon et al. 2015] for the

distance interpolation task. We observe again that the convolutional

method fails to obtain results with a small entropy coefficient for

various pairs of weights, while our method succeeds in both smooth

and noisy meshes, demonstrating the robustness of our method in

this task.

No Result

OursSolomon et al. [2015]Input Probability
Distributions

Fig. 12. Barycenters with entropy value 𝛾 = 10
−3 obtained using the convo-

lutional method (middle) and our logarithmic diffusion method (right). The
very sharp input probability distributions {𝜇𝑖 }6

𝑖=1
are shown together on

the left.
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no result

Solomon et al. [2015] our logarithmic barycenter

γ=10 -5 γ=10 -6 γ=10 -7 γ=10 -5 γ=10 -6 γ=10 -7

Fig. 13. Small entropy coefficients can lead to numerical challenges using the state-of-the-art method (middle) for computing Wasserstein barycenters, which
our logarithmic diffusion method (right) overcomes. Here, the Wasserstein barycenter of three input distributions (left) on a mesh with 99,994 triangle faces
and 49,999 vertices is shown for different entropy coefficients.

7.3 Numerical Integration for Fire and Flames
Osher and Sethian [1988] provide a first-order scheme to approxi-

mate solutions to Hamilton-Jacobi equations, which is coupled with

the Navier-Stokes equation by Nguyen et al. [2002] in the physi-

cal simulation of fire for graphics applications. The first method is

based on an upwind generalized first-order version of Godunov’s

scheme [Godunov and Bohachevsky 1959]. We compare our method

for solving the 𝐺-equation to the method in [Osher and Sethian

1988] and a Lax-Friedrichs scheme described in [Crandall and Lions

1984], both standard methods of approximation for Hamilton-Jacobi

equations, demonstrating how it could be effectively coupled in the

same fashion for applications in the simulation of fire and flames.

The main drawback of the numerical method presented in [Osher

and Sethian 1988] is: (1) a CFL condition given the method’s explicit

nature, and (2) its limitation to regular grids. Although our method

has longer runtime per time step, it offers more stability for larger

range of time step sizes (see Fig. 16), and further, it can be imple-

mented on curved triangle mesh surfaces. We focus on the special

case of flat domains for the comparison because the aforementioned

methods are designed for that case.

In Figure 15, we show a comparison between our framework and

the method in [Osher and Sethian 1988] for the evolution of a front

𝑢 with propagation prescribed by 𝑢𝑡 − ∥∇𝑢∥2 = 0, that is, essentially

the 𝐺-equation. Since this is the limiting case where 𝜀 = 0, we add

a small amount of viscosity O(10
−6) to guarantee its solutions are

continuous. This is a simple regularization technique for problems

without continuous solutions first introduced by Sethian [1985].

We apply our framework to the regularized equation 𝑢𝑡 − ∥∇𝑢∥2 =

𝜀Δ𝑢 and show numerically that the dissipation created by adding

viscosity performs the same as the reference method in [Osher and

Sethian 1988]. We observe convergence to the same steady state

and very small error at each time step of the front propagation. This

comparison suggests that our method could be used as more stable

component in larger simulation pipelines.

8 DISCUSSION AND CONCLUSION
PDE appear everywhere in geometry processing, and second-order

parabolic PDE are no exception. While there are many tools to

handle simpler PDE, such as the heat equation, more general par-

abolic PDE are a challenge to standard time integration methods

and discretization schemes. Our work establishes an effective time

integration and spatio-discretization strategy to solve this class of

PDE under mild assumptions on triangle mesh surfaces. In addi-

tion to substantial theoretical work, we showed several numerical

experiments indicating the validity of our method. We have also

demonstrated how our method can be used as a numerical solver

component in graphics applications. In particular, we showed how

our method overcomes limitations in optimal transport tasks over

geometric domains and in numerical integration schemes used for

larger simulation pipelines.

While we have explored several practical implications of our

framework, a number of interesting avenues for future work remain.

In particular, for the Fokker-Planck equation, further experimental

work includes extending results to other versions of this equation

(e.g., nonlinear) and using the solutions obtained via our method

together with the relationship to (7) to simulate Brownian motion

on triangular surface meshes. Our work provides a meaningful first-

step in this direction. On the practical side, an immediate avenue

for future work is to derive an optimization algorithm to solve

the problem in (11) along the lines of Edelstein et al. [2023] and

compare it to our current off-the-shelf solution using CVX. On

the theoretical front, we would like to explore an extension of our

results to higher-order parabolic equations with Laplacian terms,

such as the Kuramoto–Sivashinsky equation. Within the realm of

second-order parabolic PDE of the form (1), we are hopeful that

our framework would provide a means to solve systems of coupled

equations.
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No ResultNo Result

t=0 t=1/5 t=2/5 t=3/5 t=4/5 t=1

Fig. 14. Wasserstein distance interpolation on a mesh with 76,736 triangle faces and 38,370 vertices. Top row: using the convolutional method proposed
by Solomon et al. [2015]. Middle row: using our logarithmic diffusion method. Bottow row: using our logarithmic diffusion method on a mesh with added
uniformly random noise along normal directions. As seen on the top row, the convolutional method fails to obtain results for a small amount of entropy
𝛾 = 10

−5.
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Numerical comparison
Relative % error to solution in Osher and Sethian [1988]

iterations

t=0.1 t=0.3 t=0.6 t=1t=0
Ours

Osher and Sethian [1988]

Surface evolution

Fig. 15. Surface moving with speed ∥∇𝑢 ∥2. Here, the numerical comparison
is done on a regular 50 × 50 regular grid using centered differences and
periodic conditions; the time step size is ℎ = 0.01.
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A COMPARISON PRINCIPLE (THEOREM 4.1)
In this section, we provide a sketch of the proof for the comparison

principle. The formal proof can be found in §5 of [Barles 2013],

Theorem 5.2.

First, we note that by adding an appropriate multiple of 𝑡 to 𝑤 ,

we may assume that 𝑤 is a strict subsolution. In particular, there

exists a constant 𝜂 > 0 such that

𝜕𝑤

𝜕𝑡
+ 𝐻 (𝑥, 𝑞,𝑤) ≤ −𝜂 < 0. (24)

Since 𝑢 is a supersolution, we also have

𝜕𝑢

𝜕𝑡
+ 𝐻 (𝑥, 𝑞,𝑢) ≥ 0. (25)

The key idea in this proof is to obtain a contradiction by assuming

that the maximum value of𝑤 − 𝑢 is positive, i.e., we suppose𝑀 =

max{𝑤 − 𝑢} > 0. Now consider the test function

𝜓𝛽,𝛼 (𝑥, 𝑡,𝑦, 𝑠) = 𝑤 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑠) − 1

2𝛽2
∥𝑥 − 𝑦∥2

2
− 1

2𝛼2
∥𝑡 − 𝑠 ∥2

2
,

where 𝛽, 𝛼 are some small positive constants.

Suppose (𝑥, 𝑡,𝑦, 𝑠) is a maximum argument of𝜓𝛽,𝛼 and denote its

maximum value by �̄� . Under the assumption that �̄� > 0, we will

apply Lemma 5.2 in [Barles 2013], which says that in the infinitesi-

mal limit we have (𝑥, 𝑡) → (𝑦, 𝑠) and �̄� → 𝑀 . In other words, for

sufficiently small 𝛽, 𝛼 , the test function is𝜓𝛽,𝛼 is a close approxima-

tion of𝑤 −𝑢. By writing (24)–(25) in terms of the test function𝜓𝛽,𝛼
and combining the inequalities, one can deduce that for sufficiently

small 𝛽, 𝛼 , we have

−𝜂 ≥ 𝐻

(
𝑥,

𝑥 − 𝑦

𝛽2
,𝑤 (𝑥, 𝑡)

)
− 𝐻

(
𝑦,

𝑥 − 𝑦

𝛽2
, 𝑢 (𝑦, 𝑠)

)
≥ 𝐻

(
𝑥,

𝑥 − 𝑦

𝛽2
,𝑤 (𝑥, 𝑡)

)
− 𝐻

(
𝑥,

𝑥 − 𝑦

𝛽2
, 𝑢 (𝑦, 𝑠)

)
− 𝐿

(
1 +

𝑥 − 𝑦

𝛽2


2

)
∥𝑥 − 𝑦∥2

≥ 𝑐 (𝑤 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑠)) − 𝐿

(
1 +

𝑥 − 𝑦

𝛽2


2

)
∥𝑥 − 𝑦∥2

where we have used both assumptions (A2) and (A3) on 𝐻 . Taking

𝛽, 𝛼 → 0, the above implies 0 > 𝑐 (𝑤 (𝑦, 𝑠) −𝑢 (𝑦, 𝑠)), a contradiction.

B EXISTENCE AND UNIQUENESS (THEOREM 4.2)
We now present a sketch of the proof for the existence of a unique

viscosity solution to 𝜕𝑢/𝜕𝑡 + 𝐻 (𝑥, 𝑞,𝑢) = 0. The formal proof can be

found in §7 of [Barles 2013], Theorem 7.1.

Let S denote the set of all subsolutions, and let𝑢 be the pointwise

supremum of S. Then 𝑢 need not be continuous, or even semi-

continuous, but we can take its lower-semicontinuous and upper-

semicontinous envelopes 𝑢∗ and 𝑢∗, respectively, which satisfy the

inequality 𝑢∗ ≤ 𝑢 ≤ 𝑢∗. The main idea of this proof is is to establish

the reverse inequality 𝑢∗ ≤ 𝑢∗, which would imply 𝑢∗ = 𝑢 = 𝑢∗. To
do this it suffices to prove the following:

Lemma B.1. The upper envelope 𝑢∗ is a viscosity subsolution.

Lemma B.2. The lower envelope 𝑢∗ is a viscosity supersolution.

https://www.thingiverse.com/thing:182225
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To obtain Lemma B.1, the key insight is that the supremum of

a set of subsolutions is itself a subsolution. This can be shown in

three steps: first, one can show it for a pair of subsolutions, second

for a countable set of subsolutions, and, finally, for an arbitrary set

of subsolutions by reduction to the countable case.

As for Lemma B.2, we obtain it by contradiction. Suppose𝑢∗ is not
a viscosity supersolution, then without loss of generality there exists

a function 𝜙 such that 𝑢∗ −𝜙 is minimized with value zero at a point

(𝑥, 𝑡) = (𝑥0, 𝑡0) such that 𝜕𝜙 (𝑥0,𝑡0 )/𝜕𝑡 +𝐻 (𝑥0,∇𝜙 (𝑥0, 𝑡0), 𝑢 (𝑥0, 𝑡0)) =
0. One can then verify that for 𝜁 > 0 small enough, the function

max{𝑢 (𝑥, 𝑡), 𝜙 (𝑥, 𝑡) +𝜁 −∥𝑥 −𝑥0∥4

2
− ∥𝑡 −𝑡0∥4

2
} is itself a subsolution

that is greater than 𝑢 on a neighborhood of (𝑥0, 𝑡0). This contra-
dicts the definition of 𝑢 as the pointwise supremum of S. Lipschitz
continuity is used to ensure that this argument extends to the time

boundary 𝑡 = 0. It then follows from the comparison principle that

𝑢∗ ≤ 𝑢∗ as they share the same initial conditions.
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