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Fig. 1. It’s flying rubber! Our method allows for the simulation of elastic objects, such as this rubbery bouncy blob.

Numerical schemes for time integration are the cornerstone of dynamical

simulations for deformable solids. The most popular time integrators for

isotropic distortion energies rely on nonlinear root-finding solvers, most

prominently, Newton’s method. These solvers are computationally expen-

sive and sensitive to ill-conditioned Hessians and poor initial guesses; these

difficulties can particularly hamper the effectiveness of variational integra-
tors, whose momentum conservation properties require reliable root-finding.

To tackle these difficulties, this paper shows how to express variational time

integration for a large class of elastic energies as an optimization problem

with a “hidden” convex substructure. This hidden convexity suggests uses

of optimization techniques with rigorous convergence analysis, guaran-

teed inversion-free elements, and conservation of physical invariants up

to tolerance/numerical precision. In particular, we propose an Alternating

Direction Method of Multipliers (ADMM) algorithm combined with a prox-

imal operator step to solve our formulation. Empirically, our integrator

improves the performance of elastic simulation tasks, as we demonstrate in

a number of examples.
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1 Introduction
An elegant property of classical mechanics is that it admits a wide

variety of formulations and interpretations. Most prominently, New-

ton’s laws determine the state of a system by evolving a second-

order system of differential equations. An equivalent variational
formulation provided by Lagrangian mechanics shows that the equa-

tions of motion can be understood as critical points of an action
functional, which maps entire trajectories to scalar values. This for-

mulation helps derive conserved quantities of physical interest like

the Hamiltonian and momenta.

In the discrete setting, myriad time integration methods have

been proposed to solve the equations of motion, with the goal of

evolving the system’s state over discrete time steps while maintain-

ing stability and accuracy. For instance, implicit Euler integration is

used to take large time steps stably, with first-order accuracy. Ex-

plicit Runge-Kutta methods offer higher accuracy under moderate

time step restrictions for stability. These well-known integrators,

however, do not conserve physical invariants: implicit integrators

like Euler’s introduce numerical damping, losing energy over time

even in the absence of dissipative forces, while explicit integrators

like Runge-Kutta can increase the energy of the system over time.

Inspired by these shortcomings, variational time integrators adapt

the Lagranian formulation, exploiting discrete Hamilton principles,

i.e., discrete principles of stationary action, to conserve momenta
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Fig. 2. A comparison between our approach and other time integrators. A method with approximate energy conservation is needed to realistically capture the
periodic behavior of an elastic ball bouncing off of a rigid floor.

and approximately conserve energy. Implicit variational integra-

tors typically rely on iterative nonlinear solvers such as Newton’s

method to advance the state of the system. Thus, despite their conser-

vation properties, these methods can be computationally expensive,

be sensitive to the choice of initial conditions for the root-finding

procedure, and lack convergence analysis.

In this paper, we propose an alternative to classical nonlinear

solvers used in variational integrators for elastodynamic simula-

tion. In particular, rather than expressing time integration using a

generic root-finding or nonconvex optimization problem, we derive

an equivalent optimization-based formulation that is jointly con-

vex in all of its variables except the rotational component of the

unknown deformation gradient. Leveraging this reformulation, we

provide an Alternating Direction Method of Multipliers (ADMM)

algorithm combined with a simple proximal operator step to solve

our proposed formulation. By leveraging this hidden convexity, our

approach comes with rigorous convergence analysis and faster con-

vergence. Empirically, it provides increased scalability with the pos-

sibility of parallelization, as well as robustness to ill-conditioning.

Our optimization procedure employs convex subproblems that

guarantee locally inversion-free deformation, using convex per-

element semidefinite constraints. Thanks to our use of variational

integration, it preserves important physical invariants like momenta

up to the tolerance of the solver; other quantities like energy that

are not preserved exactly by variational integration still are ap-

proximately preserved in our experiments. Our method applies to

several tasks from physics-based simulation and animation, includ-

ing dynamical deformation with nonlinear distortion energies and

penalty-based external conservative and non-conservative forces.

The main contributions of our work are as follows:

• We reformulate time integration for elastodynamics as an

optimization problem, leveraging convexity properties of the

elastic potential and kinetic energy functions. Our formu-

lation is jointly convex in all motion variables except the

rotational component;

• Based on our reformulation, we propose an algorithm for

time integration using the ADMM technique;

• We propose a closed-form proximal operator approach to

incorporate external forces into our algorithm that is compu-

tationally cheap and does not change the energy/momentum

conservation.

• We apply our solver to a number of isotropic distortion ener-

gies used in elastic simulation, demonstrating stability and

efficiency.
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Our variational integrator exactly preserves momentum Our method avoids instabilities

Fig. 3. Our method shares the same conservation of momenta property as
the variational integrator in [Chao et al. 2010].

2 Related Work
Geometric distortion energies, such as the as-rigid-as-possible (ARAP)

[Sorkine and Alexa 2007] and symmetric Dirichlet [Schreiner et al.

2004] energies, are among the most common constitutive models

incorporated into the simulation of 2D and 3D shapes.

Many of these energies have their history in geometry processing.

In particular, minimizing them yields appealing results in a number

of static tasks frommesh parametrization [Liu et al. 2008; Rabinovich

et al. 2017] to volume correspondence [Abulnaga et al. 2023] and

shape deformation [Jacobson et al. 2012; Smith et al. 2019].

Distortion energies are typically nonlinear and nonconvex, which

yield numerical challenges in optimization. To address this issue,

several recent works on quasi-static problems [Brown and Narain

2021; Stein et al. 2022] optimize distortion energies via ADMM, a

local-global algorithm that is relatively simple to implement and

easy to parallelize. Most relevant, our dynamical formulation lever-

ages the hidden convexity property of isotropic distortion energies

observed by Stein et al. [2022] for static geometry processing prob-

lems. We show that a similar convexity property can be found in

symplectic integrators for dynamical problems, after reshaping these

integrators into a particular optimization-based form.

Beyond quasi-static problems, geometric distortion energies can

be used as elastic potentials in models for time-evolving deformable

volumes. Time integration of these physics problems often yields

optimization and root-finding problems similar to those encountered

in the quasi-static setting. A multitude of such methods have been

proposed to time stepwith stability and efficiency. Smith et al. [2019],

for instance, integrate their ARAP energy using the semi-implicit

scheme introduced by Baraff and Witkin [1998]. This and other

methods based on implicit Euler are unconditionally stable, at least

in the linear case. They require solving large nonlinear root-finding

problems, however, hindering performance; these implicit methods

can also introduce artificial damping (see Figure 2). Closely related to

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Fig. 4. We can simulate this bouncy animated character using ARAP energy. Our simulation is stable and obtains almost exact energy preservation.

implicit Euler integration is position-based dynamics (PBD) [Müller

et al. 2007] and its extension XPBD [Macklin et al. 2016].

Another line of work is projective dynamics [Bouaziz et al. 2014],

which proposes a fully-implicit time integration scheme. Their for-

mulation solves problems with energy potentials satisfying spe-

cific properties that allow for a local-global solve. While more ef-

ficient than Newton’s and extremely popular in graphics, these

methods require particular potentials, e.g., corotated elasticity, for

optimal performance and struggle with numerical damping. To ad-

dress some of these limitations, Liu et al. [2017] apply L-BFGS in

the projective dynamics framework to enable faster convergence

for hyperelastic materials. Narain et al. [2016] and Overby et al.

[2017] tackle general elastic potentials via a local-global strategy

and provide an ADMM scheme to solve for the state of the system.

Similarly to projective dynamics, however, they do not approxi-

mately conserve energy; as noted in §5.1, their ADMM splitting

also differs substantially from ours.

Other time integration methods include variational ones, which

use Lagrangian principles to derive integrators with exact conserva-

tion of momenta and excellent energy behavior. We refer the reader

to [Hairer et al. 2006] and [Marsden and West 2001] for an introduc-

tion to this class of integrators. In graphics, a number of variational

integrators have been proposed [Chao et al. 2010; Kharevych et al.

2006; Martin et al. 2011; Stern and Grinspun 2009].

Variational principles also appear in contact dynamics, where

potential terms are added to penalize constraint noncompliance

[Kaufman and Pai 2012]. Incremental Potential Contact (IPC) [Li

et al. 2020] has been widely used to handle collisions in the simula-

tion of large deformations. A common approach to time integration

for IPC is using implicit Newmark, which was shown to be symplec-

tic by Kane et al. [2000]. Their approach to incorporating constraints,

however, breaks the symplecticity of the time integrator. Further-

more, while IPC provides fast and robust performance in complex

contact scenarios, it does not preserve physical invariants, including

total energy (see Figure 13). To improve robustness and frictional

accuracy in contact-rich scenarios, Larionov et al. [2024] replace

IPC’s lagged friction formulation with an implicit model based on

soft constraints. Several papers build upon the barrier-function for-

mulation introduced in IPC to provide efficient GPU-accelerated

solvers [Chen et al. 2024c; Lan et al. 2023, 2022].

Perhaps most relevant to our work is the integrator by Kharevych

et al. [2006], which was subsequently used by Chao et al. [2010]

to perform simulations using their modified ARAP energy. Their

implicit formulation recasts time stepping as an energy minimiza-

tion, as opposed to root-finding. Their approach suffers from the

drawbacks of Newton’s method, which lacks guarantees of global

convergence and is sensitive to ill-conditioned Hessians.

Our work leverages the advantages of variational techniques to

derive a time integrator with strong momentum and energy con-

servation, circumventing a disadvantage of classical integration

methods. While past variational integrators depend on generic it-

erative solvers, our reformulation allows us to leverage algorithms

typical for convex or nearly-convex optimization with rigorous con-

vergence analysis and enforcement of element-wise inversion-free

properties via semidefinite constraints.

3 Background
Our work focuses on the dynamical simulation of objects with

isotropic distortion energies. Here, we establish notation and the

mathematical constructions needed in our approach to this problem.

3.1 Spatial Discretization
Suppose M ⊂ R3

is a volume at a reference configuration, and

suppose we discretizeM as a tetrahedral mesh Ω, with vertices

whose positions are stored in a matrix 𝑞 ∈ R𝑛×3
and𝑚 tetrahedra

𝑇 . We can discretize vector valued functionsM → R3
on the mesh,

such as velocity 𝑣 , using one vector in R3
per vertex.

In physics-based simulation, the typical discretization is finite

element method (FEM). Take𝑀 ∈ R𝑛×𝑛
to be the mass matrix and

𝐷 : R𝑛×3 →
(
R3×3)𝑚

be the deformation gradient operator. The

Jacobian of the mapping from the reference configuration 𝑞 to a

deformed configuration 𝑞, restricted to each tetrahedron 𝑖 , is given

by 𝐽𝑖 = 𝐷𝑖𝑞, where 𝐷𝑖𝑞 is the 𝑖
th
component of 𝐷𝑞.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Fig. 5. Second-order backward differential formula (BDF2) preserves energy better than other classical methods, but still includes damping. Here, we decrease
the time step size used with our method (ℎ = 0.004) by 2, 4 and 8× to show the effect on total energy using BDF2 over the same time interval.

From Lagrangian mechanics, we can understand the dynamics of

the deformable volume Ω as a critical point of the action functional

with respect to an unknown 𝑞(𝑡), which describes the configuration

of the mesh as a continuous function of the time 𝑡 . We define the

action functional as

S[𝑞] =
∫

1

0

[𝐾 ( ¤𝑞(𝑡)) − 𝐸 (𝐷𝑞(𝑡))] 𝑑𝑡, (1)

where 𝐸 is a potential, typically nonlinear, that depends only on

the deformation gradient 𝐷𝑞(𝑡) and 𝐾 is the kinetic energy 𝐾 (𝑣) =
1

2
𝑣⊤𝑀𝑣. The first variation of S yields Newton’s second law

𝑀 ¥𝑞(𝑡) = −∇𝑞𝐸 (𝐷𝑞(𝑡)). (2)

Below, we outline typical methods of solving for (2) in time.

3.2 Numerical Integration
We can rewrite equation (2) as a coupled pair of first-order equations:

¤𝑞 = 𝑣

¤𝑣 = −𝑀−1∇𝑞𝐸 (𝐷𝑞) .
(3)

Suppose we are given a reference configuration 𝑞 ∈ R𝑛×3
as well as

the initial velocity 𝑣 ∈ R𝑛×3
, and we wish to advance the configura-

tion forward in time by approximating the solution to (3). Given a

time step ℎ > 0, we use 𝑞𝑘 and 𝑣𝑘 to denote our approximations of

the configuration and velocity, respectively, at time ℎ𝑘 for 𝑘 ∈ N.

Explicit Euler. The simplest integration technique is forward Euler,

which imposes a strict upper bound on ℎ for stability. Higher-order

variations of this integrator, such as Runge-Kutta, improve its sta-

bility and accuracy, but almost all require many small time steps to

avoid instability; even with small time steps, underlying physical

properties like total energy can diverge (see Figure 2).

Implicit Euler. This integrator is unconditionally stable and ad-

vances the solution of (3) with first-order accuracy in ℎ, which

suffices for small ℎ. Accuracy in approximating the physical proper-

ties of the system, however, is traded-off for stability, as these solvers

introduce noticeable numerical damping. When higher accuracy is

required, a typical choice of implicit integration is the second-order

backward differentiation formula (BDF2), which is also uncondition-

ally stable and exihibits less dissipation (see Figures 2 and 5).

Variational Integration. The integrators above violate a key prop-

erty of dynamics: physical invariants of a dynamical system, such

as energy and momenta, are not conserved. Variational integra-

tors correct the behavior of these invariants by deriving a time

stepping scheme directly from the principle of least action, which

corresponds to critical points of the action functional in (1). To be
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Fig. 6. A jellyfish moves and spins with exact preservation of momenta,
avoiding the instability of prior methods.

concrete, variational integrators often discretize (1) using one-point

quadrature as follows:

𝑆𝑑 (𝑞𝑘+1, 𝑞𝑘 , ℎ) =
∑︁
𝑘+1

ℎ

[
𝐾 (𝑣𝑘+1) − 𝐸 (𝐷 (𝛼𝑞𝑘+1 + (1 − 𝛼)𝑞𝑘 ))

]
, (4)

where 𝑣𝑘+1 = (𝑞𝑘+1−𝑞𝑘 )/ℎ and 𝛼 ∈ [0, 1]. Updates for 𝑞 and 𝑣 can be

obtained by differentiating with respect to 𝑞𝑘 for each 𝑘 , with fixed

endpoints. If 𝛼 = 1/2, then this approach yields a second-order inte-

grator. These schemes often lead to expensive root-finding problems.

3.3 Polar Decomposition of the Jacobian
In the isotropic case, the potential energy of a deformable volume

can be expressed as a function of the singular values of the Jacobian

of the mapping from 𝑞 to 𝑞. To be concrete, suppose we apply polar

decomposition to each Jacobian matrix 𝐽𝑖 via 𝐽𝑖 = 𝑈𝑖𝑃𝑖 , where

𝑈𝑖 ∈ SO(3) is a rotation matrix and 𝑃𝑖 ∈ S3+ is a symmetric positive

semidefinite (SPD) matrix. Then, as described by Stein et al. [2022],

the potential energy of the deformed volume can be written entirely

in terms of the matrices 𝑃𝑖 :

𝐸 (𝐷𝑞) =
∑︁
𝑖

𝑤𝑖 𝑓 (𝑃𝑖 ),

where the𝑤𝑖 are per-tetrahedronweights and 𝑓 is a per-tetrahedron

distortion energy; many typical choices of 𝑓 are convex over the

set S3+ of SPD matrices. These isotropic energies are dubbed 𝑃-

centric invariants by Smith et al. [2019], where the corresponding

eigensystems—which can be used to recover the Hessian of the

energy—are derived in closed form.

The above observation suggests that exploiting convexity of 𝑓

over S3+, which we refer to as “hidden convexity,” could yield a time

integrator benefiting from convex optimization strategies. It is not

obvious, however, that the hidden convexity of the distortion energy

will be helpful to derive a time integrator because the discrete action

𝑆𝑑 has one term that is convex and another that is non-convex. In

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Fig. 7. By globally scaling the weights 𝑤𝑖 , our simulation changes from modeling very flexible materials to more rigid.

what follows, we reshape the problem to reveal and leverage the

hidden convexity.

4 Method
In what follows, we will show how to derive an elastodynamic time

integrator that, although not jointly convex in all of its variables,

still enjoys key benefits of convex optimization thanks to its joint

convexity in the vertex positions and principal stretches.

4.1 Hidden Convexity in the Action Functional

Following the notation of §3.2, let 𝑞𝑘 ∈ R𝑛×3
be our estimate of 𝑞(𝑡)

at time ℎ𝑘 . Again, let 𝑣𝑘+1 = (𝑞𝑘+1−𝑞𝑘 )/ℎ be the velocity, and define

𝑞𝑘+1
mid

= (𝑞𝑘+1+𝑞𝑘 )/2 as the midpoint approximation. We estimate 𝑞𝑘+1

by applying Hamilton’s principle to the action functional combined

with a constraint for the polar decomposition of the Jacobian.

In particular, we define a constrained action functional using

midpoint discretization as follows:

𝑆𝑑 =
∑︁
𝑘

ℎ

[
𝐾 (𝑣𝑘+1) − 𝐸 (𝑃𝑘+1)

]
,

subject to 𝐷𝑖𝑞
𝑘+1
mid
−𝑈 𝑘+1

𝑖 𝑃𝑘+1𝑖 = 0 ∀𝑖 .
(5)

We note that the above formulation parametrizes the mesh by dis-

cretizing both configuration space and velocity on a staggered grid.

Midpoint discretization is chosen to obtain second-order accuracy.

Critical points of the constrained action functional in (5) preserve

the symplectic form associated to the system and thus preserve the

geometry of the phase space. Thus, the resulting integrator satisfies

approximate energy conservation. Moreover, by Noëther’s theorem,

continuous symmetries of the discrete Lagrangian yield exactly-

conserved quantities. Because we use a midpoint discretization, the

resulting integrator also enjoys second-order accuracy [Fetecau et al.

2003; West 2004]. We record these observations below:

Proposition 4.1. The integrator that arises by applying Hamilton’s
principle to (5) is second-order accurate and symplectic. If the discrete
Lagrangian exhibits translational (resp., rotational symmetry), then
linear (resp., angular) momentum is conserved.

By the principle of least action, the equations of motion are given

by critical points of the functional in (5). We show that these critical

points minimize an optimization problem that is jointly convex in 𝑞

and 𝑃 (but not𝑈 ):

Theorem 4.2. Let 𝑧𝑘 be defined by

𝑧𝑘 = (2𝑞𝑘 − 𝑞𝑘−1) −𝑀−1ℎ
2

2

∑︁
𝑖

𝑤𝑖𝐷
⊤
𝑖 𝑈

𝑘
𝑖 ∇𝑓 (𝑃

𝑘
𝑖 ) . (6)

Then, critical points of the constrained action functional in (5) are
solutions to the following minimization problem:

argmin

𝑞, 𝑃∈𝑆3+, 𝑈 ∈SO(3)
𝐾

(
𝑞 − 𝑧𝑘
ℎ

)
+ 𝐸 (𝑃),

subject to 𝐷𝑖𝑞mid −𝑈𝑖𝑃𝑖 = 0 ∀𝑖 .
(7)

This formulation yields an optimization-based integration scheme

that is jointly convex in 𝑞 and 𝑃 , with the nonconvexity entirely con-

tained in𝑈—which lives in the compact space SO(3). The numerical

challenges arising from the nonconvexity are now isolated in one

bounded variable. This is a key insight of our work: the noncon-

vexity of the time variational integrator is hiding exclusively in the

rotational component. This observation is shown in the proposition

below.

Proposition 4.3. Let 𝑈 ∈ SO(3) be held fixed. Then, the mini-
mization problem in (7) is jointly convex in 𝑞 and 𝑃 .

Thus far, we have shown that we can uncover hidden convexity

in the minimization problem in (7), whose minimizers satisfy the

least action principle. As noted before, this yields a time integrator

that preserves momenta and approximately preserves energy. In §5,

we propose an algorithm to find these minimizers with convergence

guarantees under mild assumptions.

Remark. If one wanted to use another optimization-based method
to solve our time integration scheme, the update rule for vertex positions
would be fully implicit with 𝑞𝑘+1 obtained via solving the problem in
(7), and the update for velocities would be given by 𝑣𝑘+1 = (𝑞𝑘+1−𝑞𝑘 )/ℎ.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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4.2 Adding External Forces
We can incorporate conservative forces into our formulation, e.g.,

gravity or force functions to handle collisions of the volume with

the ground (see Fig. 8), by adding a potential energy term 𝑔(𝑞
mid
)

corresponding to these external forces into the Lagrangian.

Nonconservative forces, e.g., force functions to handle fixed point

constraints (see Fig. 9), can also be incorporated into our formulation

by including terms corresponding to the external forces in the action

functional. We refer the reader to the supplemental material for the

derivation of the formulations accommodating each kind of external

force.

5 Algorithm
To solve the formulation in (7), we derive an optimization method

based on the Alternating Direction Method of Multipliers (ADMM)

[Boyd et al. 2011]. Our optimization problem has the following

augmented Lagrangian

Λ = 𝐾

(
𝑞 − 𝑧𝑘
ℎ

)
+ 𝐸 (𝑃) +

∑︁
𝑖

Tr

(
𝑌⊤𝑖 (𝐷𝑖𝑞mid

−𝑈𝑖𝑃𝑖 )
)

+ 𝑔(𝑞
mid
) +

∑︁
𝑖

𝜌𝑖

2

∥𝐷𝑖𝑞mid
−𝑈𝑖𝑃𝑖 ∥2𝐹

(8)

Our ADMM algorithm cycles the following steps:

(1) Minimize Λ w.r.t. 𝑞 (linear solve).

(2) Minimize Λ w.r.t.𝑈 with added proximal term (closed form).

(3) Minimize Λ w.r.t. 𝑃 (closed form).

(4) Update 𝑌𝑖 via gradient descent of step size 𝜌𝑖 (closed form).

(5) Optional: Rescale the dual variables 𝜌𝑖 and 𝑌𝑖 (closed form).

Below, we detail each step in our algorithm.

Minimization with respect to 𝑞. We differentiate Λ with respect to

𝑞 to obtain an update for 𝑞. In the absence of the term 𝑔, the update

amounts to solving the linear system 𝐴𝑞 = 𝐵, where

𝐴 =
1

ℎ2
𝑀 +

∑︁
𝑖

𝜌𝑖

4

𝐷⊤𝑖 𝐷𝑖

and 𝐵 = − 1

ℎ2
𝑀𝑧𝑘 − 1

2

∑︁
𝑖

𝐷⊤𝑖 𝑌𝑖 +
∑︁
𝑖

𝜌𝑖

2

𝐷⊤𝑖 𝑈𝑖𝑃𝑖 −
𝜌𝑖

4

𝐷⊤𝑖 𝐷𝑖𝑞
𝑘 .

(9)

The matrix 𝐴 is precomputed and factored using Cholesky decom-

position at the beginning and need not be updated, so long as the 𝜌𝑖
are not rescaled. In this step, we also include any linear conservative

forces or constraints that can be expressed entirely in 𝑞 (see the

supplemental material).

Minimization with respect to 𝑈 . Because (5) is nonconvex in 𝑈 ,

we must adopt an update procedure for this variable such that the

ADMM algorithm still converges. To this end, we add a proximal

term, as proposed by Stein et al. [2022] for a similar optimization

problem, and thenminimize the augmented Lagrangian with respect

to𝑈 . In particular, we solve the following Procrustes problem:

argmin

𝑈𝑖 ∈SO(3)
∥𝑈𝑖 − (𝐽𝑖 + 𝜌−1𝑖 𝑌𝑖 )𝑃𝑖 − 𝑐𝑖𝑈 ( 𝑗 )𝑖

∥2𝐹 , (10)

which is decoupled for each 𝑖-th tetrahedron, and where 𝐽𝑖 = 𝐷𝑖𝑞mid
.

Here, we use superscript
( 𝑗 )

to denote the values of the variables

We incorporate gravity and collisions

Simulation Step

0.05

0

1000

Total energy

Kinetic
energy

Collision Energy

Our simulation

Gravitational
Energy

Elastic
energy

0.10

0.15

25005000

Fig. 8. An elastic bunny will exhibit internal vibrations after collision with
the ground as seen by variation in the elastic energy curve. Our method’s
conservation property is robust to these scenarios, maintaining the total
energy approximately constant throughout the simulation.

Our variational integrator incorporates fixed point constraints

Fig. 9. Our method can effortlessly accommodate fixed point constraints,
allowing a slug to swing under gravity.

at the 𝑗-th ADMM iteration. The minimizer of this problem can be

computed from the signed SVD of (𝐽𝑖 + 𝜌−1𝑖
𝑌𝑖 )𝑃𝑖 + 𝑐𝑖𝑈 ( 𝑗 )𝑖

.

Minimization with respect to 𝑃 . Minimization of the augmented

Lagrangian Λ with respect to 𝑃 can be decoupled per tetrahedron 𝑖 .

It corresponds to the following convex problem:

argmin

𝑃𝑖⪰0
𝑤𝑖 𝑓 (𝑃𝑖 ) +

𝜌𝑖

2

∥ 𝐽𝑖 −𝑈𝑖𝑃𝑖 + 𝜌−1𝑖 𝑌𝑖 ∥2𝐹 , (11)

where 𝐽𝑖 = 𝐷𝑖𝑞mid
. The convexity in 𝑃 ∈ S3+ implies that (11)

admits a unique minimizer. Typically we can solve this optimization

problem using closed-form formulas; see the supplemental material

for examples.

Minimization with respect to 𝑞′. If any nonlinear terms arising

from the potential term 𝑔, e.g. forces used to handle collisions with

the ground, were incorporated directly into the 𝑞 update, then the

minimization with respect to 𝑞 would require an iterative solver.

Instead, we apply an optimization trick to handle the nonlinearity

via a cheap (typically closed-form) proximal operator step.

In particular, we introduce a new optimization variable 𝑞′ along
with a constraint 𝑞 = 𝑞′ and replace 𝑞 with 𝑞′ in the input to the

nonlinear function 𝑔. We add the constraint and dual terms into

the augmented Lagrangian and minimize with respect to 𝑞′, which
amounts to solving the following proximal operator step:

argmin

𝑞′
𝑔(𝑞′

mid
) + 𝜇

2

∥𝑞 − 𝑞′∥2𝐹 + Tr (𝑊
⊤ (𝑞 − 𝑞′)), (12)

We refer the reader to the supplemental material for a closed-form

solution to (12) when 𝑔 is a Hookean penalty-based potential for

collisions.
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Dual variable update. The update for each of the dual variables

𝑌𝑖 employs the following closed form:

𝑌𝑖 = 𝑌
( 𝑗 )
𝑖
+ 𝜌𝑖 (𝐷𝑖𝑞mid

−𝑈𝑖𝑃𝑖 ) . (13)

5.1 Convergence Analysis
In contrast to our proposed algorithm, iterative methods like New-

ton’s method, used as the standard solver for variational integrators,

lack guarantees of convergence for nonconvex problems. In this

section, we show that by extracting the hidden convexity of the

nonconvex problem, we are able to provide a guarantee of global

convergence for our algorithm under mild conditions.

In particular, we assume conditions (A1)–(A3) detailed in the sup-

plemental material hold true. Key to obtaining a convergence result

for our algorithm is a sufficient decrease property, which states that

the gaps between values of the augmented Lagrangian Λ across it-

erates must decrease. The assumptions above are sufficient to verify

that Λ( 𝑗+1) − Λ( 𝑗 ) is bounded. We record the further conditions

required to establish decrease (a direct consequence of [Stein et al.

2022, Proposition 5.4]) as follows:

Proposition 5.1. Assume conditions (A1)–(A3) are fulfilled. Then
the matrix 𝐴 in (9) having positive eigenvalues and each of the dual
penalty parameters being sufficiently large are sufficient conditions
for sufficient decrease.

With these assumptions/sufficient conditions in hand, we state our

convergence result, inherited from Stein et al. [2022, Theorem 5.5]:

Theorem 5.2. Assume conditions (A1)-(A3) and the sufficient con-
ditions in Proposition 5.1 hold. Then Algorithm 1 in the supplemental
material converges.

Remark. Assumptions (A1) and (A2) hold so long as we follow
the explicit bounds on parameters derived by Stein et al. [2022]. In-
deed, these assumptions hold in our experiments (see Figure 1 in the
supplemental material). The first sufficient condition in Proposition
5.1 is easily verified since 𝐴 is SPD in our formulation. The second
sufficient condition can be met either by deriving explicit lower bounds
for each one of the dual parameters, which could include variables
corresponding to the 𝑞′ variable, or in practice by simply rescaling
them. The only remaining requirement is assumption (A3), which can
be verified analytically for a given choice of elastic potential energy.

5.2 Potential Energy Functions
We apply our algorithm to the simulation of elastodynamics with

four choices of potential energy function 𝑓 : R3×3 → R:

As-rigid-as-possible (ARAP). First introduced by Sorkine andAlexa
[2007], ARAP energy measures the stretch of elements without

considering locally rigid motions. Formally, the potential energy

function is given by

𝑓 (𝑃) = 𝜅

2

∥𝑃 − 𝐼 ∥2𝐹 (14)

where 𝜅 is the stiffness parameter.

Low stiffness High stiffness

ARAP SymD SymG ARAP SymD SymG

Fig. 10. Animators may choose their preferred flavor of distortion energy
to incorporate into our algorithm.

Symmetric Dirichlet. Symmetric Dirichlet is the rotationally in-

variant distortion energy, with potential energy function given by

𝑓 (𝑃) = 𝜅

2

(∥𝑃 ∥2𝐹 + ∥𝑃
−1∥2𝐹 ) (15)

This energy quantifies distortion by combining stretch and compres-

sion in a symmetric way and enforces flip-freeness via a singularity

on the locus of zero-determinant PSD matrices.

Symmetric Gradient. Stein et al. [2022] propose a new energy,

known as symmetric gradient energy, for parametrization and de-

formation. It is given by

𝑓 (𝑃) = 𝜅

2

∥𝑃 ∥2 − 𝜅 log det(𝑃) (16)

This energy encourages local rigidity while remaining flip-free. In

this paper, we demonstrate that the symmetric gradient energy is

well-suited for physics-based animation.

Neo-Hookean. Neo-Hookean elasticity, which is often used in

physics-based simulation of hyperelastic materials, is given by

𝑓 (𝑃) = 𝜅

2

(∥𝑃 ∥2𝐹 − 3) − 𝜅 log det(𝑃) +
𝜆

2

(log det(𝑃))2 (17)

where 𝜅 , the stiffness parameter, and 𝜆 are the Lamé constants. The

terms with a logarithm are volume-preserving penalty terms.

Remark. While neo-Hookean energies do not technically satisfy
the assumptions of our convergence theory (except when 𝜆 = 0, in
which case they do), they fit into our optimization algorithm; all that
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is needed is a modification of the proximal operator in (11). See the
supplemental material for details.

6 Experiments and Applications
Implementation. The vast majority of our method’s runtime is

spent iterating through the ADMM subproblems described in §5,

where we leverage CPU parallelization in the local updates as well

as Cholesky precomputation in the global 𝑞 update. This makes the

1

0.1
1000

10

10000010000

Full ADMM
iteration

tetrahedra

Global
update

seconds
computational cost of each

ADMM iteration scale linearly

with the number of mesh ele-

ments, which we validate ex-

perimentally (see inset). In

practice, we find that the num-

ber of iterations required for ADMM to converge varies (from single-

digits to the thousands) and depends mostly on the geometric com-

plexity of the model and its deformation, and less so on its level of

refinement.

Experiments. When the Lagrangian is invariant under transla-

tions (resp., rotations), our integrator should exactly conserve total

linear (resp., angular) momentum. In our setup, both of these sym-

metries occur, at least in the absence of gravity and anchors/ground

constraints, because we choose our elastic potential energy to be

isotropic. Figures 3 and 6 give two different examples of this exact

conservation. The first example is of a spinning elastic bar. The

second example is of a jellyfish, i.e., a more complicated geometry.

Our integrator also demonstrates long-term energy stability in

scenarios where other variational integrators seem to lose stability.

For instance, in Figure 4, we animate a rubber character wobbling

under its own elastic potential energy. In this example, our method

demonstrates long-term energy conservation, whereas the optimiza-

tion procedure used in [Chao et al. 2010; Kharevych et al. 2006]

becomes unstable after a few hundred time steps and eventually

blows up, despite initially conserving energy. We implement their

method using a Newton’s solver and ARAP energy. In Figure 11,

we provide another comparison experiment against the variational

integrator in [Chao et al. 2010], in which we visualize their method

becoming unstable after a few hundred steps.

A similar occurrence is observed in the example in Figure 6. Here,

our method exhibits long-term momentum conservation, whereas

the method used in [Chao et al. 2010] becomes unstable after a

1s

0.6s 

[Chao et al. 2010]

Our simulation

Fig. 11. Another example similar to Fig. 4 and Fig. 6, where our method
outperforms another variational integrator in terms of stability. Runtimes
shown are average, per simulation step.

just few hundred time steps for the jellyfish model. Preservation

of physical invariants in the examples in Figure 4 and Figure 6

is a feature that should be shared by other symplectic variational

integrators. Thus, to some degree, these instabilities reflect the

difficulty of root-finding and Newton’s method solvers rather than

the time integration scheme itself.

We also compare our method to XPBD (see Figure 12) and IPC

(see Figure 13) in terms of energy conservation for the test case of

an elastic cube bouncing off of the ground. While IPC provides a

5

2.5

0
0 200 800Step

Total Energy

5

2.5

0
0 200 800Step

Total energy

Our variational integrator

XPBD  [Macklin et al. 2016]

Fig. 12. In this test case, our variational integrator outperforms extended
position-based dynamics (XPBD) in terms of energy conservation. In this
comparison, we use ARAP energy with𝜅 = 200.0 and time step sizeℎ = 0.01.
The graph (bottom right) shows that XPBD includes numerical dissipation.

30

20

10

0
0 200 800Step

Total energy
Our variational integrator

IPC using backward Euler [Li et al. 2020]

30

20

10

0
0

IPC using Newmark [Li et al. 2020]

30

20

10

0
0 200 800Step

IPC using Newmark [Li et al. 2020]

30

20

10

0
0 200 800Step

Total Energy

200 800Step

Total Energy

Total Energy

0.022s

0.024s

2s

Fig. 13. Another example of a test case similar to Fig. 12. Here, we show
that our method outperforms IPC in terms of total energy conservation
across different time integration methods. Here, we compare to backward
Euler with no friction (top), Newmark without (middle) and with lagged
Rayleigh damping (bottom). We use 𝜅 = 200.0 and 𝜆 = 0 with the step
size recommended for Newmark stability (ℎ = 0.005). Runtimes reported
are average, per time step. We use IPC’s official implementation for the
comparison against our code; the latter is not fully optimized for speed.
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ARAP

SymG

NeoH

5.5s

4.7s

1.3s

Fig. 14. We show the effectiveness of our integrator for a larger deformation
than in other experiments. Here, the armadillo arm is stretch to up to 3× its
rest length under the force of gravity. We use stiffness 𝜅 = 35.0 and 𝜆 = 4𝜅 .
Runtimes shown are average, per time step.

  4.56s

7.64s

Fig. 15. An experiment demonstrating that the energies included in our
method create compelling animations. Here, we show a cat wagging its tail
with symmetric gradient (top) and neo-Hookean (bottom). We use 𝜅 = 35.0

and 𝜆 = 4𝜅 . The neo-Hookean energy creates a more realistic motion.

significant runtime advantage, it exhibits noticeable damping (when

using backward Euler integration) and a combination of damping

and spurious energy spikes (when using Newmark integration).

In the comparison to XPBD, we observe their method introduces

dissipation, which is to be expected given its close connection to

implicit Euler integration.

Applications. Our method can be used in a variety of examples

of interest to animators. Crucially, its performance is not affected

by making different physical choices or by using different input

parameters. In Figure 10, we simulate a gummy bear stuck to the

ground, oscillating elastically from side to side under three different

potentials: ARAP, symmetric Dirichlet (SymD), and symmetric gra-

dient (SymG). A key advantage of our method is that it can be easily

applied to simulate elastic objects governed by other potential ener-

gies (so long as they are convex in 𝑃 ). While neo-Hookean (NeoH)

energies do not satisfy the convexity assumption except when 𝜆 = 0,

empirically, our algorithm achieves convergence for a number of

larger 𝜆; we provide examples in Figures 14, 15, 16 and 17.

  7.1s2.8s

Simulation Step

5

0

 800

Total energy

Kinetic
energy

Collision Energy

Gravitational
Energy

Elastic
energy15

25

20004000

1

0

Total energy

Kinetic
energy

Collision Energy
Elastic
energy

1.5

2

Gravitational
Energy

0.5

Simulation Step 800 20004000

SymG

NeoH

SymG NeoH

Fig. 16. The symmetric gradient and neo-Hookean energies share one
volume-preserving penalty term in their formulation, but the neo-Hookean
energy has an additional term that encourages further volume-preservation.
We visualize this key difference in a collision experiment with two marsh-
mallows, each modeled with one of these energies. Runtimes shown are
average, per time step.

A key parameter in elastic simulation is the stiffness or rigidity of

the mesh, set by the coefficient of the potential energy term. Ideally,

one would like to have a method that is robust to a wide range of

stiffness values. In Figure 7, we consider the same example of the

gummy bear with three different values of stiffness, ranging from

low to high. Our method remains stable in each case, allowing us to

simulate elastic materials from flexible to rigid. A similar experiment

is shown in Figure 17, where we visualize a beam bending for various

choices of potential energy and stiffness.

External Collision Handling. Recall that we choose to model col-

lisions using a penalty potential term in the Lagrangian. Conse-

quently, our method should enjoy approximate energy conservation

even in scenarios involving external collisions, so long as we include

the “collision energy” in our total energy computation. In practice,

we find that our method exhibits strong energy conservation in

simulations involving collisions for a diverse set of meshes.

In addition to the simpler example presented in Figure 2, we

consider a bunny bouncing on the ground under the influence of

gravity in Figure 8. The bunny maintains its total energy, even at

the point of collision, even though the derivatives of the kinetic

and elastic energy change dramatically in the neighborhood of the

collision. Moreover, total energy continues to be exactly conserved

after the collision, even though the bounce induces secondary oscil-

lations on the mesh, causing the elastic and kinetic energy graphs

to “wiggle.” As another example, in Figure 18 we simulate a human

skull bouncing elastically off of a wall (with no gravity). While these
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High stiffnessMedium stiffnessLow stiffness

ARAP NeoHSymG ARAP NeoHSymG ARAP NeoHSymG

0.45s 14.1s0.95s0.63s 0.47s0.55s 1.95s 35.1s1.92s

Fig. 17. We demonstrate the effectiveness of our method with a number of stiffness values. Here, we simulate an elastic beam bending and stretching under
gravity using 𝜅 = 35.0 (left), 𝜅 = 350.0 (middle) and 𝜅 = 1400.0 (right). Our method converges consistently for a variety of energies, including neo-Hookean
with 𝜆 = 4𝜅 (left, middle) and 𝜆 = 2𝜅 (right). Runtimes reported are average, per time step.

experiments use axis-aligned planes, the collision energy functional

can be easily modified to handle planes that are not axis-aligned

and, more generally, a spring-like penalty can be defined pointwise

to handle non-planar collisions.

7 Conclusion
Hidden convexity in a class of elastic problems can be exploited to

derive an implicit variational integrator that avoids nonlinear root-

finding solvers (e.g., Newton’s). Our method exhibits several critical

advantages, including convergence analysis, greater stability than

previous works, strong energy conservation, and relative efficiency.

While we explored many applications of our framework, we

would like to pursue a number of extensions. Most notably, self-

collisions are not included in our simulations. Very flexible meshes,

however, can experience self-collisions during simulation, in which

case our method looks unrealistic (see Figure 19). Our approach

to collisions is designed to approximately preserve total energy

even during collisions. In future work, we would like to improve

the array of collisions we can handle by integration rules. While

existing approaches to contact mechanics like IPC robustly handle

self-collisions and other multiple-collision scenes, their approach

breaks the symplecticity of the integrator, losing conservation laws.

Our departure from iterative root-finding methods contributes to

a wider use of variational integrators in physics-based simulation. In

particular, we observed that instabilities of past solvers derived from

a discrete principle of least action often arose from the numerical

challenges of the iterative solver rather than the integration scheme

itself. We hope that our work inspires revived interest in solvers

derived from Hamilton’s principle and, in this context, further study

into ways of extracting convexity from nonlinear and nonconvex

time-evolving problems.
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Algorithm 1 Time Stepping

1: function admm( 𝑞𝑘 ,𝑈 𝑘 , 𝑃𝑘
)

2: Initialize 𝑞,𝑈 , 𝑃,𝑌 ← 𝑞𝑘 ,𝑈 𝑘 , 𝑃𝑘 , 0

3: while PrimalResidual > 𝛿𝑝 and PrimalDual > 𝛿𝑑 do
4: 𝑞𝑖 ← solution of (9)

5: 𝑃𝑖 ← solution of (11)

6: 𝑈𝑖 ← solution of (10)

7: update 𝑌𝑖 via (13) and (optionally) 𝜌𝑖 though (35)

8: end while
9: return 𝑞,𝑈 , 𝑃

10: end function

A Proof of Theorem 4.2
In this section, we provide a proof of the equivalency of our op-

timization problem (7) with the minimization of the constrained

action functional (5). Our strategy is to show that the two problems

have identical first-order optimality constraints. We start by deriv-

ing these constraints for the original problem (5). The Lagrangian

of the constrained minimization of the action functional is given by∑︁
𝑘

ℎ

[
𝐾 (𝑣𝑘+1) − 𝐸 (𝑃𝑘+1) +

∑︁
𝑖

Tr((𝑅𝑘+1𝑖 )⊤ (𝐷𝑖𝑞
𝑘+1
mid
−𝑈 𝑘+1

𝑖 𝑃𝑘+1𝑖 )
]
,

(18)

where the 𝑅𝑖 ’s are the dual variables for the constraint. We omit the

conditions that each 𝑃𝑖 is a PSD matrix and each𝑈𝑖 is an orthogonal

matrix as these can be enforced quite easily.

Taking the derivative of (18) with respect to 𝑞𝑘 , 𝑃𝑘
𝑖
, and 𝑅𝑘

𝑖
, we

obtain the following pair of conditions for each 𝑘 :

0 =
1

ℎ
𝑀 (2𝑞𝑘 − 𝑞𝑘−1 − 𝑞𝑘+1) + 1

2

∑︁
𝑖

𝐷⊤𝑖
(
𝑅𝑘+1𝑖 + 𝑅𝑘𝑖

)
(19)

0 = −ℎ𝑤𝑖∇𝑓 (𝑃𝑘𝑖 ) − (𝑈
𝑘
𝑖 )
⊤𝑅𝑘𝑖 (20)

0 = 𝐷𝑖𝑞
𝑘+1
mid
−𝑈 𝑘+1

𝑖 𝑃𝑘+1𝑖 (21)

From (20) together with the orthogonality of 𝑈 𝑘
𝑖
, we conclude that

for each 𝑘 , we have 𝑅𝑘
𝑖
= −ℎ𝑤𝑖𝑈

𝑘
𝑖
∇𝑓 (𝑃𝑘

𝑖
). Substituting this into

(19) and rearranging yields

𝑀𝑣𝑘+1+ℎ
2

∑︁
𝑖

𝑤𝑖𝐷
⊤
𝑖 𝑈

𝑘+1
𝑖 ∇𝑓 (𝑃𝑘+1𝑖 ) = 𝑀𝑣𝑘−ℎ

2

∑︁
𝑖

𝑤𝑖𝐷
⊤
𝑖 𝑈

𝑘
𝑖 ∇𝑓 (𝑃

𝑘
𝑖 )

(22)

The left-hand side of this expression is entirely at time 𝑘 + 1 on the

staggered time grid, whereas the right-hand side is entirely at time

𝑘 . But also notice that these two sides do not exactly advance in

parallel, as they differ by a sign.

Next, we obtain the first-order optimality constraints of the prob-

lem in (7). Its Lagrangian is given by

𝐾

(
𝑞 − 𝑧𝑘
ℎ

)
+ 𝐸 (𝑃) +

∑︁
𝑖

Tr

(
𝑌⊤𝑖 (𝐷𝑖𝑞mid

−𝑈𝑖𝑃𝑖 )
)
, (23)

where the 𝑌𝑖 ’s are the dual variables for the constraint. Taking the

derivatives of (23) with respect to 𝑞𝑘 , 𝑃𝑘
𝑖
, and 𝑌𝑖 , we obtain the

following constraints for each 𝑘 :

0 =
𝑀

ℎ2
(𝑞 − 𝑧𝑘 ) +

∑︁
𝑖

𝐷⊤𝑖
𝑌𝑖

2

(24)

0 = 𝑤𝑖∇𝑓 (𝑃𝑖 ) −𝑈⊤𝑖 𝑌𝑖 (25)

0 = 𝐷𝑖𝑞mid
−𝑈𝑖𝑃𝑖 (26)

We combine the orthogonality of 𝑈𝑖 with (25) and substitute the

result into (24) to obtain

𝑀

ℎ2
(𝑞 − 𝑧𝑘 ) + 1

2

∑︁
𝑖

𝑤𝑖𝐷
⊤
𝑖 𝑈𝑖∇𝑓 (𝑃𝑖 ) = 0 (27)

One now readily verifies that, to match the conditions (24)–(27)

with the conditions obtained in (19)–(22), it suffices to make the

following choices:

𝑞 = 𝑞𝑘+1

𝑃𝑖 = 𝑃
𝑘+1
𝑖

𝑈𝑖 = 𝑈
𝑘+1
𝑖

𝑌𝑖 = 𝑤𝑖𝑈
𝑘+1
𝑖 ∇𝑓 (𝑃𝑘+1𝑖 )

𝑧𝑘 = (2𝑞𝑘 − 𝑞𝑘−1) −𝑀−1ℎ
2

2

∑︁
𝑖

𝑤𝑖𝐷
⊤
𝑖 𝑈

𝑘
𝑖 ∇𝑓 (𝑃

𝑘
𝑖 )

Thus, we have shown that minimizing the action functional in (5) is

equivalent to the minimization problem in (7). □

B Adding External Forces
In this section, we complement our proof in §A and derivation of

the corresponding algorithm in §5.2 by discussing what changes

must be made to handle the case in which external conservative

forces, such as gravity or penalty-based collision terms, and linear

constraints are added to our model.

B.1 Analogue of Theorem 4.2
Suppose our external forces correspond to a potential energy 𝑔, and

suppose we seek to impose a linear constraint on 𝑞 of the form

𝑋𝑞 = 𝑍 . For example, 𝑔 could represent gravitational potential

energy, modeled as a weighted sum over all vertices of the height of

the vertex times the acceleration due to gravity; and 𝑋𝑞 = 𝑍 could

represent an anchor constraint, where a certain subset of vertices

is anchored by taking 𝑋 to be the diagonal matrix whose diagonal

entries are 1 if the corresponding vertex is to be anchored and zero

otherwise, and 𝑍 encodes the anchor values. In this general setting,

the constrained action takes the following shape, obtained from (5)

by simply adding the potential energy function 𝑔 corresponding to

the forces into the action and enforcing the linear constraint:

𝑆𝑑 =
∑︁
𝑘

ℎ

[
𝐾 (𝑣𝑘+1) − 𝑔(𝑞𝑘+1

mid
) − 𝐸 (𝑃𝑘+1)

]
,

subject to 𝐷𝑖𝑞
𝑘+1
mid
−𝑈 𝑘+1

𝑖 𝑃𝑘+1𝑖 = 0 ∀𝑖, and

𝑋𝑞𝑘+1
mid

= 𝑍 .

(28)

Just as we did in §A, we can derive an optimization problem whose

first-order optimality constraints match those of the problem of

minimizing the constrained action (28). The derivation is completely

analogous, the only difference being that the potential energy 𝑔 and

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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the constraint 𝑋𝑞𝑘+1
mid

= 𝑍 must be incorporated into the augmented

Lagrangian; for the sake of brevity, we choose not to repeat the

derivation. The following result formulates the desired equivalent

optimization problem:

Theorem B.1. Let 𝑧𝑘 be defined by

𝑧𝑘 = (2𝑞𝑘 − 𝑞𝑘−1) −𝑀−1ℎ
2

2

[
2∇𝑔(𝑞𝑘mid) +

∑︁
𝑖

𝑤𝑖𝐷
⊤
𝑖 𝑈

𝑘
𝑖 ∇𝑓 (𝑃

𝑘
𝑖 )

]
.

(29)

Then, critical points of the constrained action functional in (28) are
solutions to the following minimization problem:

argmin

𝑞, 𝑃∈𝑆3+, 𝑈 ∈SO(3)
𝐾

(
𝑞 − 𝑧𝑘
ℎ

)
+ 𝑔(𝑞𝑘+1mid) + 𝐸 (𝑃),

subject to 𝐷𝑖𝑞mid −𝑈𝑖𝑃𝑖 = 0 ∀𝑖, and
𝑋𝑞mid = 𝑍 .

(30)

Comparing Theorems 4.2 and B.1, we see that the inclusion of

external conservative forces changes the optimization problem in

two ways: the associated potential energy function 𝑔 is added to

the objective, and a term involving the gradient of 𝑔 is added to the

quantity 𝑧𝑘 . The imposition of the linear constraint on the action

minimization problem simply propagates the exact same constraint

into the optimization problem; in particular, it does not affect the

definition of the quantity 𝑧𝑘 .

B.2 Modified ADMM Algorithm with Linear Constraints
The augmented Lagrangian in (8) already incorporates the potential

energy term 𝑔. We now explain how the incorporation of linear

constraints impacts the steps of our ADMM algorithm. Because we

model these constraints as functions of position, the 𝑞 update is

affected, but the other updates remain unchanged.

The constraint 𝑋𝑞
mid

= 𝑍 is incorporated by adding on the

following pair of terms:

𝜇′

2

∥𝑋𝑞
mid
− 𝑍 ∥2𝐹 + Tr(𝑌

′⊤ (𝑋𝑞
mid
− 𝑍 )) .

Having modified the augmented Lagrangian in this way, we can

differentiate it with respect to 𝑞 to obtain the 𝑞 update. Doing, so

we see that the 𝑞 update amounts to solving a system of the form

𝐴𝑞 = 𝐵, where 𝐴 and 𝐵 are now given as follows:

𝐴 =
1

ℎ2
𝑀 +

∑︁
𝑖

𝜌𝑖

4

𝐷⊤𝑖 𝐷𝑖 +
1

4

𝜇′𝑋⊤𝑋

and 𝐵 = − 1

ℎ2
𝑀𝑧𝑘 − 1

2

∑︁
𝑖

𝐷⊤𝑖 𝑌𝑖 +
∑︁
𝑖

𝜌𝑖

2

𝐷⊤𝑖 𝑈𝑖𝑃𝑖 −
𝜌𝑖

4

𝐷⊤𝑖 𝐷𝑖𝑞
𝑘

+ 1

2

𝜇′𝑋⊤𝑍 − 1

2

𝑋⊤𝑌 ′ − 𝜇
′

4

𝑋⊤𝑋𝑞𝑘 .

(31)

As before, the matrix 𝐴 can be precomputed and factorized using

Cholesky decomposition at the beginning of the algorithm.

B.3 Closed Form for 𝑞′ Update
We conclude this section by deriving an explicit closed form for the

𝑞′ update in the case where 𝑔 corresponds to a quadratic penalty

potential. Because our penalty potential breaks down in per vertex

fashion, for this purpose it suffices to consider the case of a single

vertex with position 𝑞. Then we take

𝑔(𝑞) = 1

2

𝜅 |max{0,−𝑧 (𝑞)}|2,

where 𝑧 (𝑞) denotes the 𝑧-coordinate of 𝑞. Let 𝑞∗ denote the solu-
tion to the minimization problem (12). Differentiating the objective

with respect to 𝑞′ and setting the result equal to zero, we find the

following piecewise equality:

𝑧 (𝑞′) =

𝑧 (𝑞 +𝑊 /𝜇), if 𝑧 (𝑞∗) ≥ 0,

𝑧

(
𝜅ℎ𝑣/4 + 𝜇𝑞 +𝑊

𝜅/2 + 𝜇

)
, if 𝑧 (𝑞∗) < 0,

(32)

with the 𝑥 and 𝑦 components of 𝑞′ remaining unchanged, as the

penalty potential is a function purely of the 𝑧 coordinate.

C Stopping Criterion and Rescaling
We terminate our ADMM algorithm if the following conditions on

the primal and dual residuals are satisfied:

𝜖𝑝 :=

√︄∑︁
𝑖

∥ 𝐽𝑖 −𝑈𝑖𝑃𝑖 ∥2𝐹 < 𝛿𝑝 ,

𝜖𝑑 :=

√︄∑︁
𝑖

𝜌𝑖 ∥𝑃𝑖 − 𝑃𝑘𝑖 ∥
2

𝐹
< 𝛿𝑑 ,

(33)

where, following [Boyd et al. 2011; Stein et al. 2022], we define the

primal and dual tolerances to be

𝛿𝑝 := 10
−6√

3𝑚 + 10−5max

(∑︁
𝑖

∥ 𝐽𝑖 ∥𝐹 ,
∑︁
𝑖

∥𝑃𝑖 ∥𝐹

)
,

𝛿𝑑 := 10
−6√

3𝑚 + 10−5
∑︁
𝑖

∥𝐺⊤𝑖 𝜌
−1
𝑖 𝑌𝑖 ∥𝐹 .

(34)

Optional. A standard modification of the ADMM algorithm is to

rescale the dual variable 𝜌𝑖 at each iteration, adjusting𝑌𝑖 accordingly,

with the goal of improving convergence. A typical rule for rescaling

(see §3.4.1 in [Boyd et al. 2011]) is as follows

𝜌𝑘+1𝑖 =

{
1/2𝜌𝑘

𝑖
, if 𝜖𝑝𝑖 > 10𝜖𝑑𝑖

2𝜌𝑘
𝑖
, 𝜖𝑑𝑖 > 10𝜖𝑝𝑖 .

(35)

D Assumptions for Convergence Analysis
Drawing from Stein et al. [2022], we impose the following assump-

tions for convergence guarantee:

(A1) Bound. The gradient of the potential 𝑓 evaluated at the se-

quence of iterates 𝑃 ( 𝑗 ) is bounded; i.e., for each 𝑖 , there exists
a constant 𝐵𝑖 > 0 such that ∥∇𝑓 (𝑃 ( 𝑗 )

𝑖
)∥ ≤ 𝐵𝑖 .

(A2) Bound. The change across ADMM iterations in dual variable 𝑌

corresponding to the polar decomposition constraint is bounded

as follows:

∥𝑌 ( 𝑗+1)
𝑖

− 𝑌 ( 𝑗 )
𝑖
∥2𝐹 ≤

𝛾 ∥𝑌 ( 𝑗+1)
𝑖

− 𝑌 ( 𝑗 )
𝑖
+𝑈 ( 𝑗+1)

𝑖
𝑌
( 𝑗+1)
𝑖

⊤
𝑈
( 𝑗+1)
𝑖

−𝑈 ( 𝑗 )
𝑖

𝑌
( 𝑗 )
𝑖

⊤
𝑈
( 𝑗 )
𝑖
∥2𝐹

for some constant 𝛾 > 0.
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Fig. 1. The dual ratio and the norm of the potential gradient are assumed to be bounded as we detailed in §5.1 and §D. Here, we plot the maximum value for
each versus ADMM iterations for a number of time steps over our simulation in Fig. 10. Indeed, we observe that (A1) and (A3) hold in practice since these
quantities appear bounded.

(A3) Lipschitz. The gradient of the potential 𝑓 is Lipschitz contin-
uous along the sequence of iterates 𝑃 ( 𝑗 ) ; i.e., for each 𝑖 we
have

∥∇𝑓 (𝑃 ( 𝑗+1)
𝑖

) − ∇𝑓 (𝑃 ( 𝑗 )
𝑖
)∥ ≤ 𝐹𝑖 ∥𝑃 ( 𝑗+1)𝑖

− 𝑃 ( 𝑗 )
𝑖
∥

for some constant 𝐹𝑖 .

We reiterate that the validity of Assumptions (A1) and (A2) can

be verified in practice (see Figure 1), whereas Assumption (A3)

can be checked analytically, as is done for symmetric gradient and

symmetric Dirichlet energies in [Stein et al. 2022, Lemma 5.3].

E Closed form solutions
In this section, we present the close form equations to solve for 𝑃

using each of the choices of elastic energy presented in §5.2.

We solve for 𝑃 via finding the critical point of (11), which admits

a unique minimizer. As recorded by Stein et al. [2022], this amounts

to solving the following for each 𝑖:

𝑤𝑖∇𝑓 (𝑃𝑖 ) + 𝜌𝑖𝑃𝑖 = 𝜌𝑖𝑄𝑖 (36)

where 𝑄𝑖 =
1

2
((𝑈⊤

𝑖
(𝐷𝑖𝑞mid

+ 𝜌−1
𝑖
𝑌𝑖 ))⊤ +𝑈⊤𝑖 (𝐷𝑖𝑞mid

+ 𝜌−1
𝑖
𝑌𝑖 )).

ARAP. The potential gradient for ARAP is given by ∇𝑓 (𝑃) = 𝑃
and we can solve for 𝑃 via

𝑃 =
1

(𝑤𝑖/𝜌𝑖 ) + 1

(
𝑤𝑖

𝜇𝑖
I3 +𝑄𝑖

)
. (37)

Symmetric Gradient. In this case, we have ∇𝑓 (𝑃) = 𝑃 − 𝑃−1 and
(36) can be written as a quadratic equation for each 𝑖 , whose solution

we obtain via the closed form:

𝑃𝑖 =
1

2(𝑤𝑖 + 𝜌𝑖 )

(
𝜌𝑖𝑄𝑖 +

√︃
𝜌2
𝑖
𝑄2

𝑖
+ 4𝑤𝑖 (𝑤𝑖 + 𝜌𝑖 )I3

)
. (38)

Symmetric Dirichlet. For this energy we have ∇𝑓 (𝑃) = 𝑃 − 𝑃−3.
Hence 36 becomes the following:

(𝑤𝑖 + 𝜌𝑖 )𝑃4𝑖 − 𝜌𝑖𝑄𝑖𝑃
3

𝑖 −𝑤𝑖 I3 = 0. (39)

While this is a quartic equation, in principle, it does have a closed

form solution. In practice, one might prefer to use a standard quartic

solver.

F Proximal Operator for neo-Hookean energy
In this section, we describe how to modify (11) to use the neo-

Hookean potential energy in our framework, with the caveat that

our convergence theory does not apply. Despite not reflecting the

conditions of our convergence analysis, we show that in practice

this modification successfully obtains convergence for a number of

𝜆, 𝜅 values (see Fig. 17, 14, 16 and 15 for preliminary experiments).

In the large-𝜆 regime, the optimization landscape of neo-Hookean

energies becomes increasingly non-convex, posing additional nu-

merical challenges. These difficulties have motivated a number of

approaches to improve stability and convergence of the simulation

of neo-Hookean materials, we refer the reader to the works by Smith

et al. [2018] and Chen et al. [2024a,b].

Proximal Operator. Define 𝑃0𝑖 := 𝑈⊤𝑖 (𝐽𝑖 + 𝜌
−1
𝑖
𝑌𝑖 ). With this nota-

tion, we obtain the following first-order optimality condition:

𝑤𝑖𝜅 (𝑃𝑖 − 𝑃−⊤𝑖 ) +𝑤𝑖𝜆(log det 𝑃𝑖 )𝑃−⊤𝑖 + 𝜌𝑖 (𝑃𝑖 − 𝑃0𝑖 ) = 0. (40)

This implies that each 𝑃𝑖 and 𝑃0𝑖 commute and hence can be simul-

taneously diagonalized,

𝑃0𝑖 = 𝑉 diag(𝜎
0𝑖𝑘 )𝑉⊤, 𝑃𝑖 = 𝑉 diag(𝜎𝑖𝑘 )𝑉⊤, (41)

which allows us to compute the proximal operator on singular value

space, similar to [Chen et al. 2023]. Let 𝑡 := 𝜎𝑖0𝜎𝑖1𝜎𝑖2 denote the

determinant of 𝑃𝑖 . Then, for each singular value 𝜎𝑖𝑘 , we obtain the

scalar condition

𝜎2
𝑖𝑘
− 𝑏𝜎

0𝑖𝑘𝜎𝑖𝑘 + ℓ log 𝑡 − 𝑟 = 0. (42)

where we define 𝑏 :=
𝜌𝑖

𝑤𝑖𝜅+𝜌𝑖 , ℓ :=
𝑤𝑖𝜆

𝑤𝑖𝜅+𝜌𝑖 , and 𝑟 :=
𝑤𝑖𝜅

𝑤𝑖𝜅+𝜌𝑖 .
Solving the resulting quadratic gives two possible roots per sin-

gular value:

𝜎𝑖𝑘 =
1

2

𝑏𝜎
0𝑖𝑘 ±

1

2

√︃
𝑏2𝜎2

0𝑖𝑘
− 4(ℓ log 𝑡 − 𝑟 ) . (43)

We seek a value of 𝑡 such that all 𝜎𝑖𝑘 are real and nonnegative, and

satisfy 𝑡 = 𝜎𝑖0𝜎𝑖1𝜎𝑖2, which defines an implicit fixed-point problem

over 𝑡 . To ensure real-valued solutions, we enforce

𝑡 ≤ min

𝑘
exp

[
4𝑟 + 𝑏2𝜎2

0𝑖𝑘

4ℓ

]
. (44)

We also require that all 𝜎𝑖𝑘 ≥ 0 to preserve positive-definiteness,

which can restrict the choice of signs in the quadratic roots. These

observations allow us to bracket the feasible range for 𝑡 and perform

a bisection search to recover a consistent triplet (𝜎𝑖0, 𝜎𝑖1, 𝜎𝑖2) satis-
fying 𝑡 = 𝜎𝑖0𝜎𝑖1𝜎𝑖2 and 𝜎𝑖𝑘 ≥ 0. While this approach does not yield

a closed-form solution, it results in a one dimensional root-finding

problem that we solve numerically.
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